本文目录一览

1,车间吊装桁车的一般跨度是多少

这个看需要,最大的有30多米的

车间吊装桁车的一般跨度是多少

2,桁吊属于特种设备吗

桁吊属于特种设备。根据查询相关资料显示:桁吊起重机是东部项目生产车间日常应用最多的设备之一,主要用于对重物进行垂直提升和水平搬运,属于特种设备。

桁吊属于特种设备吗

3,图集03S520中梁式吊车是什么意思

你说的是03SG520吧,梁式吊车就是厂房内用的桁吊,如下图桔红色的设备

图集03S520中梁式吊车是什么意思

4,2吨桁吊安装完需要第三方验收吗

需要。2吨桁吊安装完需要是要进行验证是否存在问题的,因此是需要第三方验收的。桁吊是指桥门式起重机,是起吊设备工具,只是桁吊安装在室内,要依附于建筑物。

5,为什么现在都让用桁吊代替龙门吊

龙门吊有两种形式一种:桁架式另一种:箱式这两种根据用途和使用环境不同进行选择我们制造龙门吊这类设备
需要3吨及3吨以上需要备案我们制造龙门吊这类设备

6,桁吊和航吊是两个概念

一个。航吊就是行吊(音hángdiào),又称行车、吊车、天车,都是人们对起重机的一个笼统的叫法,行吊和我们所称的门式起重机基本一样。行吊的类别:按驱动方式基本有两类:一类为集中驱动,另一类为分别驱动。集中驱动行吊即用一台电动机带动长传动轴驱动两边的主动车轮。分别驱动行吊分别驱动即两边的主动车轮各用一台电动机驱动。中、小型桥式起重机较多采用制动器、减速器和电动机组合成一体的“三合一”驱动方式,大起重量的普通桥式起重机为便于安装和调整,驱动装置常采用万向联轴器。 按形状也可分为两类,即门式起重机和桥式起重机。门式起重机又称龙门吊,是桥式起重机的一种变形。在港口,主要用于室外的货场、料场货、散货的装卸作业。它的金属结构像门形框架,承载主梁下安装两条支脚,可以直接在地面的轨道上行走,主梁两端可以具有外伸悬臂梁。门式起重机具有场地利用率高、作业范围大、适应面广、通用性强等特点,在港口货场得到广泛使用。桥式起重机又称梁式起重机。是横架于车间、仓库和料场上空进行物料吊运的起重设备。由于它的两端坐落在高大的水泥柱或者金属支架上,形状似桥。桥式起重机的桥架沿铺设在两侧高架上的轨道纵向运行,可以充分利用桥架下面的空间吊运物料,不受地面设备的阻碍。它是使用范围最广、数量最多的一种起重机械。   桥式起重机又可分为单梁桥式起重机和双梁桥式起重机。

7,船梢 桅杆 是什么呢

船梢 就是一条船上岸那块,也就是船的最前端!前面翘起来的地方就是了…… 桅杆是:船上悬挂帆和旗帜、装设天线、支撑观测台的高的柱杆,木质的长圆竿或金属柱,通常从船的龙骨或中板上垂直竖起,可以支撑横桁帆下桁、吊杆或斜桁。 轮船上的桅杆用处很多。比如用它装信号灯,挂旗帜、架电报天线等。此外,它还能支撑吊货杆,吊装和卸运货物。
“航行中的船”当然是在大海里航行,而大海就有波浪,船将随着波浪不停摇晃,设想“风平浪静”也有阵阵涟漪,那么“不见阴影”还有什么意义?这题目的设定也太过“无影无迹”了。
同问。。。

8,桁车保养都有哪些项目

1、桁车操作司机必须持有操作证,必须熟悉掌握行车的构造性能,熟知日常保养规则。2、起吊作业前必须对工作环境、物件重量及其分布等情况作全面了解。3、进行吊钩升降和行走等作业前,应鸣声示意。4、司机和起重指挥人员必须密切配合。指挥人员必须熟悉吊车性能及其起重能力,司机应严格执行指挥人员发出的信号。信号不清或错误时,司机应拒绝执行。5、起吊作业时,重物下方禁止人员停留或通过,严禁起吊人员。6、不得超负荷起吊,特殊情况需起吊的,必须经现场负责人或技术人员批准,并有专人现场监护。禁止起吊不明重量的物体。7、严禁斜吊、斜拉和起吊地下埋设或凝结在地面的重物,现场浇注的构件或模板,必须全部松动后方起吊。8、起吊的物体应捆绑牢固,不得在重物上堆放或悬挂零星物体。起吊零星物体必须用吊笼或钢丝绳绑扎牢固,钢丝绳与物体的夹角不得小于30度。9、起吊满负荷或近满负荷时,应先将物体离地面20~50cm,停机检查吊车的确定性、制动器的可靠性、重物的平衡性、绑扎的牢固性,确认安全无误后方可升起,对易晃动的重物必须栓拉绳。10、提升和降落速度要均匀,严禁忽快忽慢和突然制动。左右回转动作应平衡,回转未停稳前不得作反向动作,严禁带载自由下降。11、起重所用钢丝绳,应有生产厂的技术证明文件为使用依据。12、吊车钢丝绳的使用,其规格、强度必须符合该吊车的规格要求。卷筒上的钢丝绳应连接牢固、排列整齐,放出钢丝绳时,卷筒上至少保留3圈以上,安装或拉出钢丝绳时应防止打环、扭结、弯曲和乱绳,不得使用扭结、变形的钢丝绳。13、钢丝绳上允许在端头处有接头。采用偏结固接时,偏接部分的长度不得小于钢丝绳直径的15倍,并不得短于300m,其偏结部分应捆扎细钢丝。采用绳长固接时,数量不得少于3个卡环结头,作业中必须经常检查紧固情况。14、每个工作日都应对钢丝绳所有可见部分以及连接部分进行检查,钢丝绳磨损其直径减少7%时应更换。15、起重吊钩、吊环有下列情形之一的,应更换:16、表面有裂纹、破口、严禁补焊,应更换;17、危险断面及钩颈有永久变形。18、挂绳面磨损超过10%。19、心轴(销子)磨损超过其直径的3~5%。

9,什么是桅杆详细

桅杆 开放分类: 轮船 读音:wéi gān 名词。 船上悬挂帆和旗帜、装设天线、支撑观测台的高的柱杆,木质的长圆竿或金属柱,通常从船的龙骨或中板上垂直竖起,可以支撑横桁帆下桁、吊杆或斜桁。 轮船上的桅杆用处很多。比如用它装信号灯,挂旗帜、架电报天线等。此外,它还能支撑吊货杆,吊装和卸运货物。 轮船上的桅杆用处很多。比如用它装信号灯,挂旗帜、架电报天线等。此外,它还能支撑吊货杆,吊装和卸运货物。 舰船桅杆源于帆船时代,在挂帆扬航的同时,也承担着舰船“耳目”的作用,正道是:“刁斗三更,风急旌旗乱”。随着社会进步和舰船技术发展,风帆时代的桅杆渐渐失去了动力源支柱的功能,演变为纯粹的舰船信息源载体,尤其是雷达的出现,但初期作为平台的高耸舰桥在后巨舰大炮时代不再受人青睐,相对低矮而流畅的舰桥显然无法满足“站得高、望得远”的要求。于是,此后桅杆结构形式的变换便与雷达技术的进步息息相关,由细而粗,由柱而塔,桅杆既成为舰船“列舰耸层楼”的标志性结构,也在不知不觉间完成了螺旋上升的变迁轨迹 在现代舰船的桅杆结构形式上可以大致将桅杆区分为桁格桅、塔形桅和筒形桅。下面分别就这几种结构形式对两力六性的不同贡献作简要分析。 现代舰船桅杆的最主要功能是提供雷达等探测设备的安装平台,因此从雷达的探测性能要求出发,桅杆自然是越高越好,但同时任何形式的桅杆都是一种结构体,有其自身固有的结构力学特性,桅杆的选用和设计都必须满足结构强度、振动、疲劳等力学指标,在相似载荷的前提下,几种结构形式的力学性能有较大差异。结构强度方面,塔形桅具有不可动摇的优势。塔形桅在结构上和上层建筑融为一体,本身也和船体结构一样设计有纵横骨架,壁板和骨架同时受力,都对强度作出贡献,因此相比较于依靠钢结构平衡受力的桁格桅(包括在桁格桅上敷上蒙皮的貌似塔形桅)和相对细长、横截面较小的筒形桅而言,塔形桅的结构强度最佳,承载能力也最强。当然,在大型舰载多功能相控阵雷达装舰之后,舰载雷达的数量有所减少,而且相控阵雷达融于舰桥结构之中,对桅杆的承载能力要求下降,出现了如美国 DDG51、日本16DDH上的轻型多面体桅杆,其设计要点显然和强度已经没有太大的关系。前苏联早早地在大型水面舰船上采用塔式桅,在结构方面就是看中其承载能力,这和前苏联舰载电子设备大而重的特性相匹配;即使雷达本身重量并不大,但为了“看得远”,舰艇也可能采用塔形桅在保证高度的前提下具有足够的强度。另外,较难衡量的是桅杆的动力性能,即振动、疲劳等方面的性能。在这方面,直接计算的理论和算法并没有发展到非常精确的程度,即使采用同一算法也有可能得出大相径庭的结果。前苏联在这方面依赖于其雄厚的基础科学研究能力和科技人员的丰富经验,往往在计算结果出来之前就已经能够作出比较准确地判断。在某出口艇的新型大倾角桁格桅的振动响应计算中,国内三家院校(海工、交大、哈船)的计算结果差异在一个数量级以上,对实际设计没有任何指导意义;而在提交俄罗斯专家后,在未经计算的情况下凭经验估摸了某个数量级的结果,此后的实艇测试证明了俄罗斯人的判断。近年来,由于有限元计算技术的发展,有限元动力计算软件日趋成熟,应该说在振动、疲劳等方面的计算结果已经能够满足工程实际的要求。 如果排除实际设计的影响,单从结构形式本身来判断,由于塔形桅和船体以连续结构连接,因此性能较好;而桁格桅和上层建筑的连接属于点状连接,在结构上形成应力集中,一般需要对根部特殊加强才能满足动力性能要求;筒形桅在结构连续性上和塔形桅相似,但接触面较小使其动力性能稍逊于塔形桅;轻型多面体桅杆本身重量较轻,承载较弱,受风面积也较小,而且有些可以做成“〉”型实心横截面,因此在振动、疲劳方面的性能将不亚于塔形桅。总体上看,塔形桅在承载能力、结构强度、抗振动疲劳等方面的性能都较好,具有结构上的综合优势;轻型多面体桅杆在考虑到实际使用后,应该承认在满足承载要求的同时,结构性能方面和塔形桅处于同一水平线上;筒形桅结构上可以视作塔形桅和轻型桅的中间体,性能上略逊一筹;桁格桅无论在承载能力、强度方面,还是在振动疲劳方面都和前三者有一定的差距 既然桁格桅在结构方面有众多的弱项,为什么还是有不少的舰艇要采用桁格桅?究其原因,应该是舰艇总体设计平衡协调的结果。桁格桅在以下方面具有优势:本身重量较轻,在占据舰艇最高位置的同时,对船体稳性影响较小;受风面积最小,使船体受横风影响减弱,有利于侧倾稳性;可以采用非金属材料制造,隐身性能较好(但在使用金属材料时,由于绕射等反射方式的存在,其隐身性能甚至比塔形桅要差);工艺性较好,和民用钢结构有共通之处。如果从这些方面考察另三种桅杆,能与之相类比的仅有轻型多面体桅杆,而且在同样采用金属材料时,轻型桅的隐身能力强于桁格桅。而塔形桅的自身重量、较大的受风面积、较大的雷达反射面积等缺点则暴露无遗。前苏联肯达级巡洋舰所为人诟病的稳性问题既有干舷较低的因素,庞大的塔形桅也是诱因之一,但在承载能力要求较高的场所塔形桅仍是不二选择。美国在70年代末80年代初的主战舰船设计中,除了核动力巡洋舰采用塔形桅之外,其余大中型驱护舰以及常规动力巡洋舰均采用桁格桅,从中可以看出,在舰船总体设计中,解决桅杆的结构性能问题时其他性能牺牲的代价要低于总体性能问题,毕竟结构力学所牵涉的平衡范围和难度要远小于稳性、隐身性,从舰船设计局部服从总体的原则出发,在这些舰船上选用桁格桅应该说是水到渠成。 至于筒形桅,应用场合并不多,由于外形细长,并不适于作为舰船的主桅安置于舰桥之上,往往直接安装于舯部甲板或甲板室上,在设计上往往更多地是考虑到实用性。除了能够分散雷达等电子设备的分布从而改善整体的电磁兼容性之外,如果本舰动力为CODOG形式且桅杆位置合适,则可用于容纳巡航用柴油机组和发电用柴油机组的排气管;在综合通信系统中,筒形桅还能兼作宽带桅杆天线的发射体(如英国ICS-3系统);从美学角度,筒形桅和主桅一起能起到平衡视觉焦点的作用。另外,筒形桅和塔形桅都具有足够的封闭空间以形成全天候的维护平台,可维性较好;而且,封闭空间也有利于高频电缆等雷达附属设施的保护,不必受风吹雨打和各种海洋腐蚀的影响。 综上,塔形桅的承载能力最强,结构强度较高,可维性较好,在选取合适的壁板倾角和涂敷吸波材料后隐身性能尚可,但自重、迎风面积较大,结构复杂;桁格桅承载能力一般,结构强度在优化设计后可以满足使用要求,设备完全露天安装,但自重、迎风面积小,结构简单;轻型多面体桅杆除了承载能力最小外,其余性能指标均较优,是目前新兴的一种桅杆结构形式。但随着雷达技术的进一步发展,和舰桥围壁共形的多波段雷达天线的研制成功将颠覆传统桅杆的样式,甚至导致桅杆的消失,正所谓:“长剑几时天外倚,真是崆峒”。 如果桅杆上有人就危险了,所以千万不要爬上桅杆!!!
船上悬挂帆和旗帜、装设天线、支撑观测台的高的柱杆,木质的长圆竿或金属柱,通常从船的龙骨或中板上垂直竖起,可以支撑横桁帆下桁、吊杆或斜桁。 轮船上的桅杆用处很多。比如用它装信号灯,挂旗帜、架电报天线等。此外,它还能支撑吊货杆,吊装和卸运货物。 轮船上的桅杆用处很多。比如用它装信号灯,挂旗帜、架电报天线等。此外,它还能支撑吊货杆,吊装和卸运货物。 舰船桅杆源于帆船时代,在挂帆扬航的同时,也承担着舰船“耳目”的作用,正道是:“刁斗三更,风急旌旗乱”。随着社会进步和舰船技术发展,风帆时代的桅杆渐渐失去了动力源支柱的功能,演变为纯粹的舰船信息源载体,尤其是雷达的出现,但初期作为平台的高耸舰桥在后巨舰大炮时代不再受人青睐,相对低矮而流畅的舰桥显然无法满足“站得高、望得远”的要求。于是,此后桅杆结构形式的变换便与雷达技术的进步息息相关,由细而粗,由柱而塔,桅杆既成为舰船“列舰耸层楼”的标志性结构,也在不知不觉间完成了螺旋上升的变迁轨迹 在现代舰船的桅杆结构形式上可以大致将桅杆区分为桁格桅、塔形桅和筒形桅。下面分别就这几种结构形式对两力六性的不同贡献作简要分析。 现代舰船桅杆的最主要功能是提供雷达等探测设备的安装平台,因此从雷达的探测性能要求出发,桅杆自然是越高越好,但同时任何形式的桅杆都是一种结构体,有其自身固有的结构力学特性,桅杆的选用和设计都必须满足结构强度、振动、疲劳等力学指标,在相似载荷的前提下,几种结构形式的力学性能有较大差异。结构强度方面,塔形桅具有不可动摇的优势。塔形桅在结构上和上层建筑融为一体,本身也和船体结构一样设计有纵横骨架,壁板和骨架同时受力,都对强度作出贡献,因此相比较于依靠钢结构平衡受力的桁格桅(包括在桁格桅上敷上蒙皮的貌似塔形桅)和相对细长、横截面较小的筒形桅而言,塔形桅的结构强度最佳,承载能力也最强。当然,在大型舰载多功能相控阵雷达装舰之后,舰载雷达的数量有所减少,而且相控阵雷达融于舰桥结构之中,对桅杆的承载能力要求下降,出现了如美国 DDG51、日本16DDH上的轻型多面体桅杆,其设计要点显然和强度已经没有太大的关系。前苏联早早地在大型水面舰船上采用塔式桅,在结构方面就是看中其承载能力,这和前苏联舰载电子设备大而重的特性相匹配;即使雷达本身重量并不大,但为了“看得远”,舰艇也可能采用塔形桅在保证高度的前提下具有足够的强度。另外,较难衡量的是桅杆的动力性能,即振动、疲劳等方面的性能。在这方面,直接计算的理论和算法并没有发展到非常精确的程度,即使采用同一算法也有可能得出大相径庭的结果。前苏联在这方面依赖于其雄厚的基础科学研究能力和科技人员的丰富经验,往往在计算结果出来之前就已经能够作出比较准确地判断。在某出口艇的新型大倾角桁格桅的振动响应计算中,国内三家院校(海工、交大、哈船)的计算结果差异在一个数量级以上,对实际设计没有任何指导意义;而在提交俄罗斯专家后,在未经计算的情况下凭经验估摸了某个数量级的结果,此后的实艇测试证明了俄罗斯人的判断。近年来,由于有限元计算技术的发展,有限元动力计算软件日趋成熟,应该说在振动、疲劳等方面的计算结果已经能够满足工程实际的要求。 如果排除实际设计的影响,单从结构形式本身来判断,由于塔形桅和船体以连续结构连接,因此性能较好;而桁格桅和上层建筑的连接属于点状连接,在结构上形成应力集中,一般需要对根部特殊加强才能满足动力性能要求;筒形桅在结构连续性上和塔形桅相似,但接触面较小使其动力性能稍逊于塔形桅;轻型多面体桅杆本身重量较轻,承载较弱,受风面积也较小,而且有些可以做成“〉”型实心横截面,因此在振动、疲劳方面的性能将不亚于塔形桅。总体上看,塔形桅在承载能力、结构强度、抗振动疲劳等方面的性能都较好,具有结构上的综合优势;轻型多面体桅杆在考虑到实际使用后,应该承认在满足承载要求的同时,结构性能方面和塔形桅处于同一水平线上;筒形桅结构上可以视作塔形桅和轻型桅的中间体,性能上略逊一筹;桁格桅无论在承载能力、强度方面,还是在振动疲劳方面都和前三者有一定的差距 既然桁格桅在结构方面有众多的弱项,为什么还是有不少的舰艇要采用桁格桅?究其原因,应该是舰艇总体设计平衡协调的结果。桁格桅在以下方面具有优势:本身重量较轻,在占据舰艇最高位置的同时,对船体稳性影响较小;受风面积最小,使船体受横风影响减弱,有利于侧倾稳性;可以采用非金属材料制造,隐身性能较好(但在使用金属材料时,由于绕射等反射方式的存在,其隐身性能甚至比塔形桅要差);工艺性较好,和民用钢结构有共通之处。如果从这些方面考察另三种桅杆,能与之相类比的仅有轻型多面体桅杆,而且在同样采用金属材料时,轻型桅的隐身能力强于桁格桅。而塔形桅的自身重量、较大的受风面积、较大的雷达反射面积等缺点则暴露无遗。前苏联肯达级巡洋舰所为人诟病的稳性问题既有干舷较低的因素,庞大的塔形桅也是诱因之一,但在承载能力要求较高的场所塔形桅仍是不二选择。美国在70年代末80年代初的主战舰船设计中,除了核动力巡洋舰采用塔形桅之外,其余大中型驱护舰以及常规动力巡洋舰均采用桁格桅,从中可以看出,在舰船总体设计中,解决桅杆的结构性能问题时其他性能牺牲的代价要低于总体性能问题,毕竟结构力学所牵涉的平衡范围和难度要远小于稳性、隐身性,从舰船设计局部服从总体的原则出发,在这些舰船上选用桁格桅应该说是水到渠成。 至于筒形桅,应用场合并不多,由于外形细长,并不适于作为舰船的主桅安置于舰桥之上,往往直接安装于舯部甲板或甲板室上,在设计上往往更多地是考虑到实用性。除了能够分散雷达等电子设备的分布从而改善整体的电磁兼容性之外,如果本舰动力为CODOG形式且桅杆位置合适,则可用于容纳巡航用柴油机组和发电用柴油机组的排气管;在综合通信系统中,筒形桅还能兼作宽带桅杆天线的发射体(如英国ICS-3系统);从美学角度,筒形桅和主桅一起能起到平衡视觉焦点的作用。另外,筒形桅和塔形桅都具有足够的封闭空间以形成全天候的维护平台,可维性较好;而且,封闭空间也有利于高频电缆等雷达附属设施的保护,不必受风吹雨打和各种海洋腐蚀的影响。 综上,塔形桅的承载能力最强,结构强度较高,可维性较好,在选取合适的壁板倾角和涂敷吸波材料后隐身性能尚可,但自重、迎风面积较大,结构复杂;桁格桅承载能力一般,结构强度在优化设计后可以满足使用要求,设备完全露天安装,但自重、迎风面积小,结构简单;轻型多面体桅杆除了承载能力最小外,其余性能指标均较优,是目前新兴的一种桅杆结构形式。但随着雷达技术的进一步发展,和舰桥围壁共形的多波段雷达天线的研制成功将颠覆传统桅杆的样式,甚至导致桅杆的消失,正所谓:“长剑几时天外倚,真是崆峒”。 如果桅杆上有人就危险了,所以千万不要爬上桅杆!!!

文章TAG:车间  吊装  一般  跨度  桁吊  
下一篇