1,哥德巴赫猜想是啥

哥德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想: a.任何一个大于 6的偶数都可以表示成两个素数之和; b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。

哥德巴赫猜想是啥

2,数学三大未解之谜

即费马猜想、四色猜想和哥德巴赫猜想。费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理;四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理;哥德巴赫猜想尚未解决,目前最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。
三大 一是无限小数的出现既分数,但以解决; 二是无理数的出现,但以解决; 三就是著名的歌特巴赫猜想,1+1=2? 这里的1+1=2?是指:一个大偶数(大于2的偶数)一定能分解成两个质数相加的形式。 到现在还未解决.

数学三大未解之谜

3,世界三大数学未解难题是

费尔马大定理 应该被人证明了四色猜想 据说是靠计算机证明了,但程序冗长,能看完或者看明白的也不多。哥德巴赫猜想 确实无人能证。
一:庞加莱猜想,任何一个封闭的三维空间,只要它里面所有的封闭曲线都可以收缩成一点,这个空间就一定是一个三维圆球 六大世纪难题仍然待解 二,np完全问题 如果某人告诉你,数13717421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以分解为3607乘上3803,那么你就可以用一个袖珍计算器验证这是对的。很快用内部结构来验证一个答案,还是花费大量的时间来求解,被看作逻辑和计算机科学中最突出的问题之一。它是斯蒂文?考克(stephencook)于1971年陈述的。 三, 霍奇(hodge)猜想 霍奇猜想断言,对于所谓射影代数簇这种特别完美的空间类型来说,称作霍奇闭链的部件实际上是称作代数闭链的几何部件的(有理线性)组合。 四,黎曼(riemann)假设 著名的黎曼假设断言,方程z(s)=0的所有有意义的解都在一条直线上。这点已经对于开始的1500000000个解验证过。证明它对于每一个有意义的解都成立将为围绕素数分布的许多奥秘带来光明。 五, 杨-米尔斯(yang-mills)理论 大约半个世纪以前,杨振宁和米尔斯发现,量子物理揭示了在基本粒子物理与几何对象的数学之间的令人注目的关系。尽管如此,他们的既描述重粒子、又在数学上严格的方程没有已知的解。“质量缺口”假设,从来没有得到一个数学上令人满意的证实。 六,纳维叶-斯托克斯(navier-stokes)方程 起伏的波浪跟随着我们的正在湖中蜿蜒穿梭的小船,湍急的气流跟随着我们的现代喷气式飞机的飞行。数学家和物理学家深信,无论是微风还是湍流,都可通过理解纳维叶-斯托克斯方程的解,来对其进行解释和预言。 七,贝赫(birch)和斯维讷通-戴尔(swinnerton-dyer)猜想 当解是一个阿贝尔簇的点时,贝赫和斯维讷通-戴尔猜想认为,有理点的群的大小与一个有关的蔡塔函数z(s)在点s=1附近的性态。特别是,这个有趣的猜想认为,如果z(1)等于0,那么存在无限多个有理点(解),相反,如果z(1)不等于0,那么只存在有限多个这样的点。
费尔马大定理 四色猜想 哥德巴赫猜想

世界三大数学未解难题是

4,数学知识

世界近代三大数学难题之一。哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想: (a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。 (b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。 这就是着名的哥德巴赫猜想。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。但验格的数学证明尚待数学家的努力。 从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 目前最佳的结果是中国数学家陈景润於1966年证明的,称为陈氏定理(Chens Theorem) ? “任何充份大的偶数都是一个质数与一个自然数之和,而後者仅仅是两个质数的乘积。” 通常都简称这个结果为大偶数可表示为 “1 + 2 ”的形式。 在陈景润之前,关於偶数可表示为 s个质数的乘积 与t个质数的乘积之和(简称“s + t ”问题)之进展情况如下: 1920年,挪威的布朗(Brun)证明了 “9 + 9 ”。 1924年,德国的拉特马赫(Rademacher)证明了“7 + 7 ”。 1932年,英国的埃斯特曼(Estermann)证明了 “6 + 6 ”。 1937年,意大利的蕾西(Ricei)先後证明了“5 + 7 ”, “4 + 9 ”, “3 + 15 ”和“2 + 366 ”。 1938年,苏联的布赫 夕太勃(Byxwrao)证明了“5 + 5 ”。 1940年,苏联的布赫 夕太勃(Byxwrao)证明了 “4 + 4 ”。 1948年,匈牙利的瑞尼(Renyi)证明了“1 + c ”,其中c是一很大的自然 数。 1956年,中国的王元证明了 “3 + 4 ”。 1957年,中国的王元先後证明了 “3 + 3 ”和 “2 + 3 ”。 1962年,中国的潘承洞和苏联的巴尔巴恩(BapoaH)证明了 “1 + 5 ”, 中国的王元证明了“1 + 4 ”。 1965年,苏联的布赫 夕太勃(Byxwrao)和小维诺格拉多夫(BHHopappB),及 意大利的朋比利(Bombieri)证明了“1 + 3 ”。 1966年,中国的陈景润证明了 “1 + 2 ”。 最终会由谁攻克 “1 + 1 ”这个难题呢?现在还没法预测。

5,各德巴赫猜想

不管检验多大的数都会发现,大于4的偶数总能写成两个奇素数之和,大于7的奇数总能写成三个奇素数之和。例如:  6 = 3 + 3, 8 = 5 + 3  10 = 5 + 5 , ………  100 = 97 + 3 102 = 97 + 5 ………  9 = 3 + 3 + 3, 11 = 5 + 3 + 3 ………  99 = 89 + 7 + 3, 101 + 89 + 7 + 5 , ………  那么这两个结论是不是对一切这样的偶数和奇数都成立呢? 1742年6月7日,德国数学家哥德巴赫在给欧拉的信中第一次提出了上述问题。6月30日欧拉回信说:“任何大于4的偶数都是两个奇素数之和,虽然我还不能证明它,但我确信无疑,认为这是完全正确的定理。”由于欧拉是当时最伟大的数学家,他的信心吸引了许多数学家试图证明它们,但直到19世纪末都没有取得任何进展,这就是著名的哥德巴赫猜想。  解决这个问题的方法,是检验每个自然数,看哥德巴赫猜想是否对每一个数都成立。但困难在于自然数有无限多个,不管已经验证了多少个,也不能下结论说下一个数还是这样。实际上,有人对直到33000000000000的所有偶数都做了验证,仍不能解决这一问题。因此,一位著名数学家说:“哥德巴赫猜想的困难程度,可以和任何没有解决的数学问题相匹敌。也有人把哥德巴赫猜想比作数学王冠上的明珠。”  为了摘取这颗明珠,数学家们做了无数次的努力。1937年,苏联数学家证明了每个大奇数都可以表示为三个奇数之和,这个大奇数比10的400万次方(1后面跟上400万个0)还要大,而目前已知的最大素数比这小得多。但离结论还差得很远,而且它也没证明奇数能否表示成三个奇素数之和。因此,数学家采用分步走的办法,先证明一个类似于哥德巴赫猜想的问题,即先证明任何大于4的正整数,都能表示为c个素数之和(c是某个常数)。沿着这条路,数学家们先后证明了:  c≤800000 (1930年),  C≤2208 (1935年),  c≤71 (1936年),  c≤67 (1937年),  c≤20 (1950年),  1956年中国的尹文霖证明了c≤18。  用更复杂的数学工具,1937年苏联数学家证明对足够大的偶数,c≤4,哥德巴赫的问题相当于c=2。但由4到2的证明是相当困难的,显然这条路也并不完全畅通。  与此同时,数学家们还在试走另外一条路。即证明每个大偶数可以表示为:一个素因数的个数不超过 a 个的数与一个素因数的个数不超过 b 个的数之和。这一命题叫做(a+b)。这样,哥德巴赫猜想基本上就是要证明(1+1)是正确的。  1920年,挪威数学家布朗首先证明了(9+9),此后这方面的工作不断取得进展。  1957年,我国数学家王元证明了(2+3)。  1962年,中国数学家潘承洞证明了(1+5),同年又和王元合作证明了(1+4)。后来又有人证明了(1+3)。  1966年,中国数学家陈景润证明了(1+2),并于1973年发表,立即轰动了国际数学界。一位英国数学家称陈景润移动了“群山”。  尽管由(1+2)到(1+1)只有一步之隔了,但这一步却有难以想象的艰难。有许多数学家认为,要想证明(1+1),很可能必须创造新的方法,以往的路都是走不通的。
1+1:哥德巴赫猜想
一个劲的问你们为什么要这么大雨怎么可以这样玩转我是不可能
德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明。 从此,这道数学难题引起了几乎所有数学家的注意。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。 中国数学家陈景润于1966年证明:任何充份大的偶数都是一个质数与一个自然数之和,而后者可表示为两个质数的乘积。”通常这个结果表示为 1+2。这是目前这个问题的最佳结果。
德巴赫猜想是世界近代三大数学难题之一。1742年,由德国中学教师哥德巴赫在教学中首先发现的。 1742年6月7日哥德巴赫写信给当时的大数学家欧拉,正式提出了以下的猜想:a.任何一个大于 6的偶数都可以表示成两个素数之和。b.任何一个大于9的奇数都可以表示成三个素数之和。 这就是哥德巴赫猜想。欧拉在回信中说,他相信这个猜想是正确的,但他不能证明

6,数学三大难题是什么

世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。
导师接着讲到:古代数学史上有世界三大难题(倍立方体、方圆、三分角)。近代数学史又有第五公设、费马大定理、任一大偶数表两素之和。20棵树植树问题,四色绘地图问题,单色三角形问题。通称现代数学三大难题。
数学haiyou三大难题
世界近代三大数学难题之一四色猜想 四色猜想的提出来自英国。1852年,毕业于伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着色工作时,发现了一种有趣的现象:“看来,每幅地图都可以用四种颜色着色,使得有共同边界的国家着上不同的颜色。”这个结论能不能从数学上加以严格证明呢?他和在大学读书的弟弟格里斯决心试一试。兄弟二人为证明这一问题而使用的稿纸已经堆了一大叠,可是研究工作没有进展。 1852年10月23日,他的弟弟就这个问题的证明请教他的老师、著名数学家德.摩尔根,摩尔根也没有能找到解决这个问题的途径,于是写信向自己的好友、著名数学家哈密尔顿爵士请教。哈密尔顿接到摩尔根的信后,对四色问题进行论证。但直到1865年哈密尔顿逝世为止,问题也没有能够解决。 1872年,英国当时最著名的数学家凯利正式向伦敦数学学会提出了这个问题,于是四色 猜想成了世界数学界关注的问题。世界上许多一流的数学家都纷纷参加了四色猜想的大会战 。1878~1880年两年间,著名的律师兼数学家肯普和泰勒两人分别提交了证明四色猜想的论文,宣布证明了四色定理,大家都认为四色猜想从此也就解决了。 11年后,即1890年,数学家赫伍德以自己的精确计算指出肯普的证明是错误的。不久,泰勒的证明也被人们否定了。后来,越来越多的数学家虽然对此绞尽脑汁,但一无所获。于是,人们开始认识到,这个貌似容易的题目, 实是一个可与费马猜想相媲美的难题:先辈数学大师们的努力,为后世的数学家揭示四色猜想之谜铺平了道路。 进入20世纪以来,科学家们对四色猜想的证明基本上是按照肯普的想法在进行。1913年,伯克霍夫在肯普的基础上引进了一些新技巧,美国数学家富兰克林于1939年证明了22国以下的地图都可以用四色着色。1950年,有人从22国推进到35国。1960年,有人又证明了39国以下的地图可以只用四种颜色着色;随后又推进到了50国。看来这种推进仍然十分缓慢。电子计算机问世以后,由于演算速度迅速提高,加之人机对话的出现,大大加快了对四色猜想证明的进程。1976年,美国数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子计算机上,用了1200个小时,作了100亿判断,终于完成了四色定理的证明。四色猜想的计算机证明,轰动了世界。它不仅解决了一个历时100多年的难题,而且有可能成为数学史上一系列新思维的起点。不过也有不少数学家并不满足于计算机取得的成就,他们还在寻找一种简捷明快的书面证明方法。 -------- 世界近代三大数学难题之一 费马最后定理 被公认执世界报纸牛耳地位地位的纽约时报於1993年6月24日在其一版头题刊登了一则有 关数学难题得以解决的消息,那则消息的标题是「在陈年数学困局中,终於有人呼叫『 我找到了』」。时报一版的开始文章中还附了一张留着长发、穿着中古世纪欧洲学袍的 男人照片。这个古意盎然的男人,就是法国的数学家费马(Pierre de Fermat)(费马 小传请参考附录)。费马是十七世纪最卓越的数学家之一,他在数学许多领域中都有极 大的贡献,因为他的本行是专业的律师,为了表彰他的数学造诣,世人冠以「业余王子 」之美称,在三百六十多年前的某一天,费马正在阅读一本古希腊数学家戴奥芬多斯的 数学书时,突然心血来潮在书页的空白处,写下一个看起来很简单的定理这个定理的内 容是有关一个方程式 x2 + y2 =z2的正整数解的问题,当n=2时就是我们所熟知的毕氏定 理(中国古代又称勾股弦定理):x2 + y2 =z2,此处z表一直角形之斜边而x、y为其之 两股,也就是一个直角三角形之斜边的平方等於它的两股的平方和,这个方程式当然有 整数解(其实有很多),例如:x=3、y=4、z=5;x=6、y=8、z=10;x=5、y=12、z=13… 等等。 费马声称当n>2时,就找不到满足xn +yn = zn的整数解,例如:方程式x3 +y3=z3就无法 找到整数解。 当时费马并没有说明原因,他只是留下这个叙述并且也说他已经发现这个定理的证明妙 法,只是书页的空白处不够无法写下。始作俑者的费马也因此留下了千古的难题,三百 多年来无数的数学家尝试要去解决这个难题却都徒劳无功。这个号称世纪难题的费马最 后定理也就成了数学界的心头大患,极欲解之而后快。 十九世纪时法国的法兰西斯数学院曾经在一八一五年和一八六0年两度悬赏金质奖章和 三百法郎给任何解决此一难题的人,可惜都没有人能够领到奖赏。德国的数学家佛尔夫 斯克尔(P?Wolfskehl)在1908年提供十万马克,给能够证明费马最后定理是正确的人, 有效期间为100年。其间由於经济大萧条的原因,此笔奖额已贬值至七千五百马克,虽然 如此仍然吸引不少的「数学痴」。 二十世纪电脑发展以后,许多数学家用电脑计算可以证明这个定理当n为很大时是成立的 ,1983年电脑专家斯洛文斯基借助电脑运行5782秒证明当n为286243-1时费马定理是正确 的(注286243-1为一天文数字,大约为25960位数)。 虽然如此,数学家还没有找到一个普遍性的证明。不过这个三百多年的数学悬案终於解 决了,这个数学难题是由英国的数学家威利斯(Andrew Wiles)所解决。其实威利斯是 利用二十世纪过去三十年来抽象数学发展的结果加以证明。 五0年代日本数学家谷山丰首先提出一个有关椭圆曲现的猜想,后来由另一位数学家志 村五郎加以发扬光大,当时没有人认为这个猜想与费马定理有任何关联。在八0年代德 国数学家佛列将谷山丰的猜想与费马定理扯在一起,而威利斯所做的正是根据这个关联 论证出一种形式的谷山丰猜想是正确的,进而推出费马最后定理也是正确的。这个结论 由威利斯在1993年的6月21日於美国剑桥大学牛顿数学研究所的研讨会正式发表,这个报 告马上震惊整个数学界,就是数学门墙外的社会大众也寄以无限的关注。不过威利斯的 证明马上被检验出有少许的瑕疵,於是威利斯与他的学生又花了十四个月的时间再加以 修正。1994年9月19日他们终於交出完整无瑕的解答,数学界的梦魇终於结束。1997年6 月,威利斯在德国哥庭根大学领取了佛尔夫斯克尔奖。当年的十万法克约为两百万美金 ,不过威利斯领到时,只值五万美金左右,但威利斯已经名列青史,永垂不朽了。 要证明费马最后定理是正确的 (即xn + yn = zn 对n33 均无正整数解) 只需证 x4+ y4 = z4 和xp+ yp = zp (P为奇质数),都没有整数解。 ---------------- 世界近代三大数学难题之一 哥德巴赫猜想 哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。如6=3+3,12=5+7等等。 1742年6月7日,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。但是对于更大的数目,猜想也应是对的,然而不能作出证明。欧拉一直到死也没有对此作出证明。从此,这道著名的数学难题引起了世界上成千上万数学家的注意。200年过去了,没有人证明它。哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。到了20世纪20年代,才有人开始向它靠近。1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。 1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。至此,哥德巴赫猜想只剩下最后一步(1+1)了。陈景润的论文于1973年发表在中国科学院的《科学通报》第17期上,这一成果受到国际数学界的重视,从而使中国的数论研究跃居世界领先地位,陈景润的有关理论被称为“陈氏定理”。1996年3月下旬,当陈景润即将摘下数学王冠上的这颗明珠,“在距离哥德巴赫猜想(1+1)的光辉顶峰只有飓尺之遥时,他却体力不支倒下去了……”在他身后,将会有更多的人去攀登这座高峰。

文章TAG:世界  三大  数学  猜想  世界三大数学猜想  
下一篇