本文目录一览

1,哪些因素会使心室肌细胞在超常期产生异常电活动

心室肌细胞的动作电们分有效不应期、相对不应期、超常期.且会自动去极化,有一个特殊的期,是心室肌细胞的兴奋性的标志.有期前收缩和代偿间歇的生理现象.骨骼肌细胞的动作电位分期基本与心肌细胞相同,但是其一个周期的时间较心肌细胞短,由交感神经支配运动.

哪些因素会使心室肌细胞在超常期产生异常电活动

2,说明心肌自律性和不应期的机制及生理意义

自律性产生的机制 心肌细胞必须达到阈电位方能发生兴奋,自律细胞由于舒张期自动除极存在,使膜电位下降达阈电位水平从而产生兴奋,如此周而复始即形成自动节律性兴奋。自律细胞的动作电位4期膜电位并不稳定,而是开始自动除极,达阈电位水平从而产生新的动作电位。因此,4期自动去极是自律性的基础。由于不同细胞电活动方式的不同,产生舒张期除极的离子基础亦不同。 不应期的实质在于钠通道的失活,而超常期的实质在于其膜电位偏低。此外,不应期缩短则期前兴奋(extra excitation)容易产生,兴奋折返易于形成,两者均可导致心律失常。反之,则有利于制止心律失常的发生。 有效不应期(ERP)和动作电位时程(APD)往往呈平行关系,但两者的影响因素不尽相同,故可有不同程度的改变。ERP反映膜的去极化能力(gNa的变化),APD则主要反映膜的复极化速度(gK的变化)。一般而言,ERP的相对延长(ERP/ADP比值增大)有抗心律失常的效果。例如奎尼丁使ERP和ADP两者都延长,但其ERP的延长大于ADP的延长;利多卡因使ERP和ADP两者都缩短,但ERP的缩短小于ADP的缩短。结果两种药都使ERP/ADP的比值增大,故都具有抗心律失常的作用。 在一个心脏内,不同的心肌细胞其ADP和ERP是不相同的。例如心房肌细胞的ADP和ERP都短于心室肌;在心室内其心室肌细胞的ADP与ERP也不同于其浦肯野纤维;不同部位的浦肯野纤维其ADP与ERP也不相同。就浦肯野纤维而言,从希氏束到清肯野纤维与心室肌膜接处,其ADP与ERP逐渐延长,到此联接处ERP最长,因此过早的兴奋波往往落在其ERP中而不能下传,因而起到门控的作用,这一特点具有其特殊的生理意义。
 【考点】心肌的自律性原理。   【解析】1)自动节律性   将动物的心脏摘出体外,保持于适当环境中,心脏一定时间内仍然能够自动地、有节律地进行跳动。心脏在离体和脱离神经支配的情况下,仍然能自动地产生兴奋和收缩的特性,称为自动节律性(简称自律性),心脏的自律性来源于心脏内特殊传导系统的自律细胞。心脏特殊传导系统各部分的自律性高低不同,在正常情况下窦房结的自律性最高(约为每分钟100次)。房室交界次之(约为每分钟50次),心室内传导组织最低(每分钟约20~40次)。正常心脏的节律活动是受自律性最高的窦房结所控制。窦房结是主导整个心脏兴奋和收缩的正常部位为心脏的正常起搏点。   2)心肌细胞兴奋性的周期性变化心室肌细胞兴奋后,其兴奋性变化可分为以下几个时期:   (1)有效不应期:从心肌细胞去极化开始到复极化3期膜内电位约-55毫伏的期间内,不论给予多么强大的刺激,都不能使膜再次去极化或局部去极化,这个时期称为绝对不应期。在复极化从-55毫伏到达-60毫伏的这段时间内,心肌细胞兴奋性开始恢复,对特别强大的刺激可产生局部去极化(局部兴奋),但仍不能产生扩布性兴奋,这段时间称为局部反应期。绝对不应期和局部反应期合称为有效不应期,即由0期开始到复极化3期-60毫伏为止的这段不能产生动作电位的时期。   (2)相对不应期:从有效不应期完毕,膜电位-60毫伏到-80毫伏的期间,用阈上刺激才能产生动作电位(扩布性兴奋)。这一段时间称为相对不应期。此期心肌兴奋性逐渐恢复,但仍低于正常。   (3)超常期:在复极化完毕前,从膜内电位由约-80毫伏到-90毫伏这一时间内,膜电位的水平较接近阈电位,引起兴奋所需的刺激较小,即兴奋性较高,因此将这段时期称为超常期。   最后,膜复极化完毕到达静息电位(或舒张电位)时,兴奋性恢复正常。   每次兴奋后兴奋性发生周期性变化的现象是所有神经和肌肉组织的共性,但心肌兴奋后的有效不应期特别长,一直延长到心肌机械收缩的舒张开始以后。也就是说,在整个心脏收缩期内,任何强度的刺激都不能使心肌产生扩布性兴奋。心肌的这一特性具有重要意义,它使心肌不能产生象骨骼肌那样的强直收缩,始终保持着收缩与舒张交替的节律性活动,这样心脏的充盈和射血才可能进行。

说明心肌自律性和不应期的机制及生理意义

3,您好 请问什么是心肌兴奋 谢谢

1.影响心肌兴奋性的因素:①静息电位或最大复极电位的水平;②阈电位的水平;③引起0期去极化的离子通道性状。   2.心室肌细胞兴奋性的周期性变化:   有效不应期:从心肌细胞0期去极化开始到复极化3期膜内电位约-55mV的期间内,不论给予多么强大的刺激,都不能使膜再次去极化或局部去极化,这个时期称为绝对不应期。在复极化从-55~-60mV的这段时间内,心肌细胞兴奋性开始恢复,对特别强大的刺激医`学教育网搜集整理可产生局部去极化(局部兴奋),但仍不能产生扩布性兴奋,这段时间称为局部反应期。绝对不应期和局部反应期合称为有效不应期。   相对不应期:从有效不应期完毕,膜电位从-60mV到-80mV的期间,用阈上刺激才能产生动作电位,这一段时间称为相对不应期。此期心肌兴奋性逐渐恢复,但仍低于正常。   超常期:在复极化完毕前,从膜内电位由-80mV到-90mV这一时间内,膜电位的水平较接近阈电位,引起兴奋所需的刺激较小,即兴奋性较高,因此将这段时期称为超常期。   3.期前收缩和代偿间歇:在心室肌正常节律性活动的过程中,如果在有效不应期之后到下一次窦房结兴奋传来之前,受到人工刺激或异位起搏点传来的刺激,可引医`学教育网搜集整理起心室肌提前产生一次兴奋和收缩,称为期前兴奋和期前收缩(亦称额外收缩)。在期前收缩之后出现一个较长的心室舒张期,称为代偿间歇。这是因为期前兴奋也有自己的有效不应期,当下一次窦房结的兴奋传到心室肌时,正好落在期前兴奋的有效不应期中,因此不能引起心室兴奋,必须等到下一次窦房结的兴奋传来才发生反应。
就是 心机那个兴奋!
心肌受窦房结节律性刺激而收缩。
心肌受到刺激后产生动作电位,并发生兴奋收缩偶联,最终产生机械收缩,即心肌兴奋。
心肌(cardiac muscle) 由心肌细胞构成的一种肌肉组织。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。前5种组成了心脏起搏传导系统,它们所含肌原纤维极少,或根本没有,因此均无收缩功能;但是,它们具有自律性和传导性,是心脏自律性活动的功能基础;后两种具收缩性,是心脏舒缩活动的功能基础。 心肌细胞兴奋时会产生动作电位,这种电位变化与骨骼肌、神经细胞的动作电位大致相似。都可以表现为静息电位和兴奋时的动作电位。心肌细胞膜主要由类脂质和蛋白质分子构成。静息时膜表面任何两点都是等电位的,但在膜内和膜外却存在着明显的电位差,用细胞内微电极记录到的静息电位约为90毫伏,膜外电位为正,膜内的为负。当心肌细胞受刺激而兴奋时,兴奋处膜电位发生反极化,即膜外电位暂时变负,膜内电位暂时变正,兴奋后又可恢复原来的极化状态,这叫再极化或复极化。心肌细胞动作电位与骨骼肌动作电位的主要区别是前者持续时间长,特别是再极化过程持续时间长,一般可达200~300毫秒,形成平台,心肌细胞动作电位的持续期大体相当心肌细胞的收缩期。动作电位最先出现的锋电位可达+10到+30毫伏心肌动作电位的持续时程随心率的变化而改变;心率越快动作电位的持续期相应缩短,一般动作电位的持续期约为两次心搏间期的1/2。 心肌兴奋后膜内电位恢复到 -55毫伏段以前这时间内,任何强大的刺激都不会再引起心肌兴奋,这段时间叫绝对不应期,当膜内电位由-55毫伏恢复到-66毫伏左右时,如果第二个刺激足够强的话,可引起膜的部分去极化,但不能传播(局部兴奋),即不能引起可传播的动作电位,这段时间叫做有效不应期。从有效不应期之末到复极化基本完成 (膜内电位恢复到-80毫伏左右)的这段时间叫相对不应期,此时阈值以上的第二个刺激可引起动作电位。相对不应期之后有一段时间心肌细胞的兴奋性超出正常水平,叫做超常期,此时阈下强度的刺激也能引起细胞的兴奋,产生动作电位。可见心肌动作电位可以精确地反映其兴奋的变化,持续的平台反映很长的不应期。心室肌特长的不应期有重要的生理学意义,它可以确保心搏有节律地工作而不受过多刺激的影响,不会像骨骼肌那样产生强直收缩从而导致心脏泵血功能的停止。心房肌的绝对不应期短得多,仅仅150毫秒,从而常可产生较快的收缩频率,出现心房搏动或心房颤动。心房的相对不应期和超常期均为30~40毫秒,但它的有效不应期较长,约200~250毫秒。这一特性有利于心脏进行长期不疲劳的舒缩活动,而不致于像骨骼肌那样产生强直收缩而影响其射血功能。

您好 请问什么是心肌兴奋 谢谢

4,什么是电位

电位是物理学的概念,两点之间的电位差就是电压。动作电位是心理学概念: (1)概念:可兴奋组织或细胞受到阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。 (2)形成条件: ①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+ -K+泵的转运)。 ②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。 ③可兴奋组织或细胞受阈上刺激。 (3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支。 http://baike.baidu.com/view/270540.html?wtp=tt
物质是由原子组成的,原子由中间带正电的原子核和外围带负电的电子组成,外围电子有脱离原子的趋势,不同的原子,其电子的脱离能力是不同的。 这样一来,两种物质接触时,电子脱离能力大的物质就相当于带有正电了,另一种带有负电,在它们之间就产生了电压差,也就是电位了! 电位差跟电位的意思差不多,也就是不同电位的差了。 电位与电流、电压都没有直接的关系。 举个例子吧:电位是指绝对电位,如同说海拔一样;电压是指两点的电位差,如同相对高度,例如珠穆郞玛峰和青蔵高原的相对高度只有四千多米,但前者的绝对高度是八千多米;电流是电压与电阻的比值,电压一定,电阻小时,电流就大啊!
定义:空间中某一点的电位是把单位正电荷从无限远处(假设此处电位为零)带到该点时所消耗的电能。电位是电能的强度因素,它的单位是伏特(简称伏,用V表示,是voltage的缩写)。设空间中有两个位置1和2,其电位分别为φ1和φ2,则位置1对于位置2的电位差△φ=φ2-φ1;相应,其电位降E=φ1-φ2。后者在电化学中用得较多,称作电势,在工业或日常生活中也常称作电压(voltage)。当单位正电苛通过一个物质相A的相界面时,因在A的相界面上存在着表面电势,是不定值,故一个物质相中某一位置的“绝对”电位无法确定,也不能测量,人们能测量的只是相同的物相内,两个不同位置的电位差△φ或电势E。例如,用电位差计或电压表所测量的是它的两端接柱(均为成分相同的黄铜相)间的电势。在英语中电位和电势这两个概念用了同一个词,potential,汉译时往往混淆。实际上当人们遇到“电位”、“电势”或“电压”等词时,一般都是指“电位降”,即电势;只有在理论探讨时,“电位”这一概念才有用。
动作电位 action potential 简称AP(1)概念:可兴奋组织或细胞受到阀刺激或阈上刺激时,在静息电位基础上发生的快速、可逆转、可传播的细胞膜两侧的电变化。动作电位的主要成份是峰电位。 (2)形成条件: ①细胞膜两侧存在离子浓度差,细胞膜内K+浓度高于细胞膜外,而细胞外Na+、Ca2+、Cl-高于细胞内,这种浓度差的维持依靠离子泵的主动转运。(主要是Na+ -K+泵的转运)。 ②细胞膜在不同状态下对不同离子的通透性不同,例如,安静时主要允许K+通透,而去极化到阈电位水平时又主要允许Na+通透。 ③可兴奋组织或细胞受阈上刺激。 (3)形成过程:≥阈刺激→细胞部分去极化→Na+少量内流→去极化至阈电位水平→Na+内流与去极化形成正反馈(Na+爆发性内流)→达到Na+平衡电位(膜内为正膜外为负)→形成动作电位上升支。 膜去极化达一定电位水平→Na+内流停止、K+迅速外流→形成动作电位下降支。 (4)形成机制:动作电位上升支——Na+内流所致。 动作电位的幅度决定于细胞内外的Na+浓度差,细胞外液Na+浓度降低动作电位幅度也相应降低,而阻断Na+通道(河豚毒)则能阻碍动作电位的产生。 动作电位下降支——K+外流所致。 (5)动作电位特征: ①产生和传播都是“全或无”式的。 ②传播的方式为局部电流,传播速度与细胞直径成正比。 ③动作电位是一种快速,可逆的电变化,产生动作电位的细胞膜将经历一系列兴奋性的变化:绝对不应期——相对不应期——超常期——低常期,它们与动作电位各时期的对应关系是:峰电位——绝对不应期;负后电位——相对不应期和超常期;正后电位——低常期。 ④动作电位期间Na+、K+离子的跨膜转运是通过通道蛋白进行的,通道有开放、关闭、备用三种状态,由当时的膜电位决定,故这种离子通道称为电压门控的离子通道,而形成静息电位的K+通道是非门控的离子通道。当膜的某一离子通道处于失活(关闭)状态时,膜对该离子的通透性为零,同时膜电导就为零(电导与通透性一致),而且不会受刺激而开放,只有通道恢复到备用状态时才可以在特定刺激作用下开放。

5,什么是中心肌

你听错了吧!应该是腿部的某块肌肉,但还真没听说过什么中心肌!
 心肌(cardiac muscle) 由心肌细胞构成的一种肌肉组织。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。前5种组成了心脏起搏传导系统,它们所含肌原纤维极少,或根本没有,因此均无收缩功能;但是,它们具有自律性和传导性,是心脏自律性活动的功能基础;后两种具收缩性,是心脏舒缩活动的功能基??   心肌细胞的结构特征 心肌细胞与骨骼肌的结构基本相似,也有横纹,但在结构上具有以下几个特征:①心肌细胞为短柱状,一般只有一个细胞核,而骨骼肌纤维是多核细胞。心肌细胞之间有闰盘结构。该处细胞膜凹凸相嵌,并特殊分化形成桥粒,彼此紧密连接,但心肌细胞之间并无原生质的连续。心肌组织过去曾被误认为是合胞体,电子显微镜的研究发现心肌细胞间有明显的隔膜,从而得到纠正(参见彩图插页第37、40页)。心肌的闰盘有利于细胞间的兴奋传递。这一方面由于该处结构对电流的阻抗较低,兴奋波易于通过;另方面又因该处呈间隙连接,内有15~20埃的嗜水小管,可允许钙离子等离子通透转运。因此,正常的心房肌或心室肌细胞虽然彼此分开,但几乎同时兴奋而作同步收缩,大大提高了心肌收缩的效能,功能上体现了合胞体的特性,故常有“功能合胞体”之称。②心肌细胞的细胞核多位于细胞中部,形状似椭圆或似长方形,其长轴与肌原纤维的方向一致。肌原纤维绕核而行,核的两端富有肌浆,其中含有丰富的糖原颗粒和线粒体,以适应心肌持续性节律收缩活动的需要。从横断面来看,心肌细胞的直径比骨骼肌小,前者约为15微米,而后者则为100微米左右。从纵断面来看,心肌细胞的肌节长度也比骨骼肌的肌节为短。③在电子显微镜下观察,也可看到心肌细胞的肌原纤维、横小管、肌质网、线粒体、糖原、脂肪等超微结构。但是心肌细胞与骨骼肌有所不同;心肌细胞的肌原纤维粗细差别很大,介于0.2~2.3微米之间;同时,粗的肌原纤维与细的肌原纤维可相互移行,相邻者又彼此接近以致分界不清。心肌细胞的横小管位于Z线水平,多种哺乳动物均有纵轴向伸出,管径约0.2微米。而骨骼肌的横小管位于A-I带交界处,无纵轴向伸出,管径较大,约0.4微米。心肌细胞的肌质网丛状居中间,侧终池不多,与横小管不广泛相贴。总之,心肌细胞与骨骼肌细胞在形态和功能上均各有其特点。   心肌的生理特性 心肌细胞的结构特征决定了心肌的生理特性。   自律性 动物的心脏在适宜的离子浓度、渗透压、酸碱度、温湿度以及充分的氧气和能源供应等条件下,即使除去所有的神经,甚至在离体条件下,它仍然能够保持其固有的节律性收缩活动。即心肌本身具有自动节律性,简称自律性。绝大多数脊椎动物心肌的自律性是肌源性的,而不是神经源性的。鸡胚在孵化后的第2天,尚无神经纤维长入,就已经出现自律性舒缩活动。心肌细胞经过组织培养过程而新生一代的心肌细胞也有自律性。这些都是有力的证据。但在无脊椎动物,如有些节肢动物,其心肌的自律性是神经源性的,如鲎就是一例。但鲎在胚胎发育阶段,心搏自律性也是肌源性的,直到第28天神经发育完善以后,它的管状心脏的自律性搏动才变成神经源性的;切断神经后会使心搏停止。乙酰胆碱可使成年鲎心的搏动加速,而在胚胎期的鲎心则对乙酰胆碱无反应。脊椎动物和无脊椎动物中的软体动物、被囊动物的心搏自律性属肌源性;环形动物、昆虫纲动物的心搏多属神经源性。蜜蜂、蝗虫、蟋蟀、蟑螂的心搏都受外部神经和激素的调节,有些昆虫如蚕的心似有几个起搏点,因此常发生逆行性搏动。在生理情况下,哺乳动物心脏的起搏传导系统中,自律性最高的是窦房结起搏细胞,其起搏节律在整体情况下,因受神经的调节而保持于每分钟70次左右(在成年人)的窦性心律水平。房室交界部和浦肯野纤维的自律性次之,分别为40~55次/分钟及25~40次/分钟;心房肌和心室肌无自律性。   兴奋性及兴奋时的电位变化 心肌细胞兴奋时与骨骼肌和神经细胞一样,会产生动作电位,其兴奋性也经历一系列的时相性变化。但心肌的动作电位又有其特点。以心室肌为例,它从去极化到复极化的全过程,可分为0、1、2、3、4共5个时相,0期为去极化过程,其余4个期为复极化过程。心室肌的复极化过程很长,一般可达300~350毫秒。并在2期出现电位停滞于零线附近缓慢复极化的平台,这是心室肌动作电位区别于骨骼肌的显著特点。   心肌细胞兴奋时会产生动作电位。这种电位变化与骨骼?⑸窬赴亩鞯缥淮笾孪嗨啤6伎梢员硐治蚕⒌缥缓托朔苁钡亩鞯缥弧P募∠赴ぶ饕衫嘀屎偷鞍字史肿庸钩伞>蚕⑹蹦け砻嫒魏瘟降愣际堑鹊缥坏模谀つ诤湍ね馊创嬖谧琶飨缘牡缥徊睿孟赴谖⒌缂锹嫉降木蚕⒌缥辉嘉?0毫伏,膜外电位为正,膜内的为负。当心肌细胞受刺激而兴奋时,兴奋处膜电位发生反极化,即膜外电位暂时变负,膜内电位暂时变正。兴奋后又可恢复原来的极化状态,这叫再极化或复极化。心肌细胞动作电位与骨骼肌动作电位的主要区别是前者持续时间长,特别是再极化过程持续时间长,一般可达200~300毫秒,形成平台,心肌细胞动作电位的持续期大体相当心肌细胞的收缩期。动作电位最先出现的锋电位可达+10到+30毫伏。心肌动作电位的持续时程随心率的变化而改变;心率越快动作电位的持续期相应缩短,一般动作电位的持续期约为两次心搏间期的1/2。   心肌兴奋后膜内电位恢复到-55毫伏段以前这时间内,任何强大的刺激都不会再引起心肌兴奋,这段时间叫绝对不应期,当膜内电位由-55毫伏恢复到-66毫伏左右时,如果第二个刺激足够强的话,可引起膜的部分去极化,但不能传播(局部兴奋),即不能引起可传播的动作电位,这段时间叫做有效不应期。从有效不应期之末到复极化基本完成(膜内电位恢复到-80毫伏左右)的这段时间叫相对不应期,此时阈值以上的第二个刺激可引起动作电位。相对不应期之后有一段时间心肌细胞的兴奋性超出正常水平,叫做超常期,此时阈下强度的刺激也能引起细胞的兴奋,产生动作电位(图1)。可见心肌动作电位可以精确地反映其兴奋的变化,持续的平台反映很长的不应期。心室肌特长的不应期有重要的生理学意义,它可以确保心搏有节律地工作而不受过多刺激的影响,不会象骨骼肌那样产生强直收缩从而导致心脏泵血功能的停止。心房肌的绝对不应期短得多,仅仅150毫秒,从而常可产生较快的收缩频率,出现心房搏动或心房颤动。心房的相对不应期和超常期均为30~40毫秒,但它的有效不应期较长,约200~250毫秒。这一特性有利于心脏进行长期不疲劳的舒缩活动,而不致于象骨骼肌那样产生强直收缩而影响其射血功能。   传导性 心肌细胞具有传导兴奋的特性。正常心脏的节律起搏点是窦房结。它所产生的自动节律性兴奋,可依次通过心脏的起搏传导系统。而先后传到心房肌和心室肌的工作细胞,使心房和心室依次产生节律性的收缩活动。心肌的兴奋在窦房结内传导的速度较慢,约0.05米/秒;房内束的传导速度较快,为1.0~1.2米/秒;房室交界部的结区的传导速度最慢,仅有0.02~0.05米/秒;房室束及其左右分枝的浦肯野纤维的传导速度最快,分别为1.2~2.0及2.0~4.0米/秒。   收缩性 心脏的节律性同步收缩活动是心肌的又一重要生理特性。首先,由于心肌有较长的有效不应期和自动节律性;同时,心房肌和心室肌又各自作为功能合胞体,几乎是同时地产生整个心房或心室的同步性收缩,使心房或心室的内压快速增高,推动其中的血液流动,从而实现血液循环的生理功能。总之,心房和心室肌肉的节律性、顺序性、同步性收缩和舒张活动是心脏实现其泵血功能的基??/textarea>

6,心肌的一般特性

心肌(cardiac muscle) 由心肌细胞构成的一种肌肉组织。广义的心肌细胞包括组成窦房结、房内束、房室交界部、房室束(即希斯束)和浦肯野纤维等的特殊分化了的心肌细胞,以及一般的心房肌和心室肌工作细胞。前5种组成了心脏起搏传导系统,它们所含肌原纤维极少,或根本没有,因此均无收缩功能;但是,它们具有自律性和传导性,是心脏自律性活动的功能基础;后两种具收缩性,是心脏舒缩活动的功能基??br /> 心肌细胞的结构特征 心肌细胞与骨骼肌的结构基本相似,也有横纹,但在结构上具有以下几个特征:①心肌细胞为短柱状,一般只有一个细胞核,而骨骼肌纤维是多核细胞。心肌细胞之间有闰盘结构。该处细胞膜凹凸相嵌,并特殊分化形成桥粒,彼此紧密连接,但心肌细胞之间并无原生质的连续。心肌组织过去曾被误认为是合胞体,电子显微镜的研究发现心肌细胞间有明显的隔膜,从而得到纠正(参见彩图插页第37、40页)。心肌的闰盘有利于细胞间的兴奋传递。这一方面由于该处结构对电流的阻抗较低,兴奋波易于通过;另方面又因该处呈间隙连接,内有15~20埃的嗜水小管,可允许钙离子等离子通透转运。因此,正常的心房肌或心室肌细胞虽然彼此分开,但几乎同时兴奋而作同步收缩,大大提高了心肌收缩的效能,功能上体现了合胞体的特性,故常有“功能合胞体”之称。②心肌细胞的细胞核多位于细胞中部,形状似椭圆或似长方形,其长轴与肌原纤维的方向一致。肌原纤维绕核而行,核的两端富有肌浆,其中含有丰富的糖原颗粒和线粒体,以适应心肌持续性节律收缩活动的需要。从横断面来看,心肌细胞的直径比骨骼肌小,前者约为15微米,而后者则为100微米左右。从纵断面来看,心肌细胞的肌节长度也比骨骼肌的肌节为短。③在电子显微镜下观察,也可看到心肌细胞的肌原纤维、横小管、肌质网、线粒体、糖原、脂肪等超微结构。但是心肌细胞与骨骼肌有所不同;心肌细胞的肌原纤维粗细差别很大,介于0.2~2.3微米之间;同时,粗的肌原纤维与细的肌原纤维可相互移行,相邻者又彼此接近以致分界不清。心肌细胞的横小管位于Z线水平,多种哺乳动物均有纵轴向伸出,管径约0.2微米。而骨骼肌的横小管位于A-I带交界处,无纵轴向伸出,管径较大,约0.4微米。心肌细胞的肌质网丛状居中间,侧终池不多,与横小管不广泛相贴。总之,心肌细胞与骨骼肌细胞在形态和功能上均各有其特点。 心肌的生理特性 心肌细胞的结构特征决定了心肌的生理特性。 自律性 动物的心脏在适宜的离子浓度、渗透压、酸碱度、温湿度以及充分的氧气和能源供应等条件下,即使除去所有的神经,甚至在离体条件下,它仍然能够保持其固有的节律性收缩活动。即心肌本身具有自动节律性,简称自律性。绝大多数脊椎动物心肌的自律性是肌源性的,而不是神经源性的。鸡胚在孵化后的第2天,尚无神经纤维长入,就已经出现自律性舒缩活动。心肌细胞经过组织培养过程而新生一代的心肌细胞也有自律性。这些都是有力的证据。但在无脊椎动物,如有些节肢动物,其心肌的自律性是神经源性的,如鲎就是一例。但鲎在胚胎发育阶段,心搏自律性也是肌源性的,直到第28天神经发育完善以后,它的管状心脏的自律性搏动才变成神经源性的;切断神经后会使心搏停止。乙酰胆碱可使成年鲎心的搏动加速,而在胚胎期的鲎心则对乙酰胆碱无反应。脊椎动物和无脊椎动物中的软体动物、被囊动物的心搏自律性属肌源性;环形动物、昆虫纲动物的心搏多属神经源性。蜜蜂、蝗虫、蟋蟀、蟑螂的心搏都受外部神经和激素的调节,有些昆虫如蚕的心似有几个起搏点,因此常发生逆行性搏动。在生理情况下,哺乳动物心脏的起搏传导系统中,自律性最高的是窦房结起搏细胞,其起搏节律在整体情况下,因受神经的调节而保持于每分钟70次左右(在成年人)的窦性心律水平。房室交界部和浦肯野纤维的自律性次之,分别为40~55次/分钟及25~40次/分钟;心房肌和心室肌无自律性。 兴奋性及兴奋时的电位变化 心肌细胞兴奋时与骨骼肌和神经细胞一样,会产生动作电位,其兴奋性也经历一系列的时相性变化。但心肌的动作电位又有其特点。以心室肌为例,它从去极化到复极化的全过程,可分为0、1、2、3、4共5个时相,0期为去极化过程,其余4个期为复极化过程。心室肌的复极化过程很长,一般可达300~350毫秒。并在2期出现电位停滞于零线附近缓慢复极化的平台,这是心室肌动作电位区别于骨骼肌的显著特点。 心肌细胞兴奋时会产生动作电位。这种电位变化与骨骼?⑸窬赴亩鞯缥淮笾孪嗨啤6伎梢员硐治蚕⒌缥缓托朔苁钡亩鞯缥弧P募∠赴ぶ饕衫嘀屎偷鞍字史肿庸钩伞>蚕⑹蹦け砻嫒魏瘟降愣际堑鹊缥坏模谀つ诤湍ね馊创嬖谧琶飨缘牡缥徊睿孟赴谖⒌缂锹嫉降木蚕⒌缥辉嘉?0毫伏,膜外电位为正,膜内的为负。当心肌细胞受刺激而兴奋时,兴奋处膜电位发生反极化,即膜外电位暂时变负,膜内电位暂时变正。兴奋后又可恢复原来的极化状态,这叫再极化或复极化。心肌细胞动作电位与骨骼肌动作电位的主要区别是前者持续时间长,特别是再极化过程持续时间长,一般可达200~300毫秒,形成平台,心肌细胞动作电位的持续期大体相当心肌细胞的收缩期。动作电位最先出现的锋电位可达+10到+30毫伏。心肌动作电位的持续时程随心率的变化而改变;心率越快动作电位的持续期相应缩短,一般动作电位的持续期约为两次心搏间期的1/2。 心肌兴奋后膜内电位恢复到-55毫伏段以前这时间内,任何强大的刺激都不会再引起心肌兴奋,这段时间叫绝对不应期,当膜内电位由-55毫伏恢复到-66毫伏左右时,如果第二个刺激足够强的话,可引起膜的部分去极化,但不能传播(局部兴奋),即不能引起可传播的动作电位,这段时间叫做有效不应期。从有效不应期之末到复极化基本完成(膜内电位恢复到-80毫伏左右)的这段时间叫相对不应期,此时阈值以上的第二个刺激可引起动作电位。相对不应期之后有一段时间心肌细胞的兴奋性超出正常水平,叫做超常期,此时阈下强度的刺激也能引起细胞的兴奋,产生动作电位(图1)。可见心肌动作电位可以精确地反映其兴奋的变化,持续的平台反映很长的不应期。心室肌特长的不应期有重要的生理学意义,它可以确保心搏有节律地工作而不受过多刺激的影响,不会象骨骼肌那样产生强直收缩从而导致心脏泵血功能的停止。心房肌的绝对不应期短得多,仅仅150毫秒,从而常可产生较快的收缩频率,出现心房搏动或心房颤动。心房的相对不应期和超常期均为30~40毫秒,但它的有效不应期较长,约200~250毫秒。这一特性有利于心脏进行长期不疲劳的舒缩活动,而不致于象骨骼肌那样产生强直收缩而影响其射血功能。 传导性 心肌细胞具有传导兴奋的特性。正常心脏的节律起搏点是窦房结。它所产生的自动节律性兴奋,可依次通过心脏的起搏传导系统。而先后传到心房肌和心室肌的工作细胞,使心房和心室依次产生节律性的收缩活动。心肌的兴奋在窦房结内传导的速度较慢,约0.05米/秒;房内束的传导速度较快,为1.0~1.2米/秒;房室交界部的结区的传导速度最慢,仅有0.02~0.05米/秒;房室束及其左右分枝的浦肯野纤维的传导速度最快,分别为1.2~2.0及2.0~4.0米/秒。 收缩性 心脏的节律性同步收缩活动是心肌的又一重要生理特性。首先,由于心肌有较长的有效不应期和自动节律性;同时,心房肌和心室肌又各自作为功能合胞体,几乎是同时地产生整个心房或心室的同步性收缩,使心房或心室的内压快速增高,推动其中的血液流动,从而实现血液循环的生理功能。总之,心房和心室肌肉的节律性、顺序性、同步性收缩和舒张活动是心脏实现其泵血功能的基?? 运动系统的动力部分,在神经系统的支配下,肌肉收缩,以关节为枢纽,牵动骨骼产生运动。 详细 大多数骨骼肌(skeletal muscle)借肌健附着在骨骼上。分布于躯干和四肢的每块肌肉均由许多平行排列的骨骼肌纤维组成,它们的周围包裹着结缔组织。包在整块肌外面的结缔组织为肌外膜(epimysium),它是一层致密结缔组织膜,含有血管和神经。肌外膜的结缔组织以及血管和神经的分支伸入肌内,分隔和包围大小不等的肌束,形成肌束膜(perimysium)。分布在每条肌纤维周围的少量结缔组织为肌内膜(endomysium),肌内膜含有丰富的毛细血管。各层结缔组织膜除有支持、连接、营养和保护肌组织的作用外,对单条肌纤维的活动、乃至对肌束和整块肌肉的肌纤维群体活动也起着调整作用。

文章TAG:超常期  哪些因素会使心室肌细胞在超常期产生异常电活动  
下一篇