本文目录一览

1,数学高一人教A版和B版有什么区别

人教B版的比A版的难一些b版里只多讲了一点点内容,还都是高考不考的,纯粹是为了开拓眼界。例如学三角函数(必修四)时b版会讲和差化积公式和反三角函数,其实在数学考试上真的没用。如果您是学a版的,根本不需要羡慕b版的,至于真正有用而a版上没有的东西老师会给你补充的。至于预习,用a版足够了。A版为文科A版解立体几何用几何法,B版用向量法学习用书,B版为理科学习用书

数学高一人教A版和B版有什么区别

2,人教版高一数学课本

第一章 集合与函数概念   1.1 集合   1.2 函数及其表示   1.3 函数的基本性质   实习作业   小结   复习参考题 第二章 基本初等函数(Ⅰ)   2.1 指数函数   2.2 对数函数   2.3 幂函数   小结   复习参考题 第三章 函数的应用   3.1 函数与方程   3.2 函数模型及其应用
人教不知道。

人教版高一数学课本

3,高一数学目录

第一章 集合与简易逻辑 一、集合 1.1 集合 1.2 子集、全集、补集 1.3 交集、并集 1.4 含绝对值的不等式解法 1.5 一元二次不等式解法 二、简易逻辑 1.6 逻辑联结词 1.7 四种命题 1.8 充分条件与必要条件第二章 函数 一、函数 2.1 函数 2.2 函数的表示法 2.3 函数的单调性 2.4 反函数 二、指数与指数函数 2.5 指数 2.6 指数函数 三、对数与对数函数 2.7 对数 2.8 对数函数 2.9 函数的应用举例第三章 数列 3.1 数列 3.2 等差数列 3.3 等差数列的前N项和 3.4 等比数列 3.5 等比数列的前N项和

高一数学目录

4,高一人教版数学上册内容

到了高一不是说上册下册这样子的了。高中数学分为必修1至5,还有选修的。根据各个省和地区的不同,必修1-5的上课顺序是不同的,但是肯定先上必修1。但是在高一上学期会上差不多2本必修。必修一是学集合和基本初等函数,函数运用。说难不难,说是容易也是不容易的。要打好基础就是了。一些地方是必修1+必修4(三角函数,平面向量,三角恒等变换),有些地方是1+2(立体几何,解析几何)主要是看各个地方的教育局的安排。
点击该链接(人教版必修一)
人民教育出版社网( <a href="http://wenwen.soso.com/z/urlalertpage.e?sp=shttp%3a%2f%2fwww.pep.com.cn%2f%ef%bc%89" target="_blank">http://www.pep.com.cn/)</a>里有电子书本的。

5,求高一数学数列知识点人教版

3.等差数列的基本性质⑴公差为d的等差数列,各项同加一数所得数列仍是等差数列,其公差仍为d.⑵公差为d的等差数列,各项同乘以常数k所得数列仍是等差数列,其公差为kd.⑶若⑷对任何m、n ,在等差数列⑸、一般地,如果l,k,p,…,m,n,r,…皆为自然数,且l + k + p + … = m + n + r + … (两边的自然数个数相等),那么当⑹公差为d的等差数列,从中取出等距离的项,构成一个新数列,此数列仍是等差数列,其公差为kd( k为取出项数之差).⑺如果⑻在等差数列中,从第一项起,每一项(有穷数列末项除外)都是它前后两项的等差中项.⑼当公差d>0时,等差数列中的数随项数的增大而增大;当d<0时,等差数列中的数随项数的减少而减小;d=0时,等差数列中的数等于一个常数.⑽设a ,a ,a 为等差数列中的三项,且a 与a ,a 与a 的项距差之比 = ( ≠-1),则a = .5.等差数列前n项和公式S 的基本性质⑴数列⑵在等差数列⑶若数列⑷若两个等差数列⑸在等差数列⑹等差数列⑺记等差数列3.等比数列的基本性质⑴公比为q的等比数列,从中取出等距离的项,构成一个新数列,此数列仍是等比数列,其公比为q ( m为等距离的项数之差).⑵对任何m、n ,在等比数列⑶一般地,如果t ,k,p,…,m,n,r,…皆为自然数,且t + k,p,…,m + … = m + n + r + … (两边的自然数个数相等),那么当⑷若⑸如果⑹如果⑺两个等比数列各对应项的积组成的数列仍是等比数列,且公比等于这两个数列的公比的积.⑻当q>1且a >0或0<q<1且a <0时,等比数列为递增数列;当a >0且0<q<1或a <0且q>1时,等比数列为递减数列;当q = 1时,等比数列为常数列;当q<0时,等比数列为摆动数列.4.等比数列前n项和公式S 的基本性质⑴如果数列也就是说,公比为q的等比数列的前n项和公式是q的分段函数的一系列函数值,分段的界限是在q = 1处.因此,使用等比数列的前n项和公式,必须要弄清公比q是可能等于1还是必不等于1,如果q可能等于1,则需分q = 1和q≠1进行讨论.⑵当已知a ,q,n时,用公式S = ;当已知a ,q,a 时,用公式S = .⑶若S 是以q为公比的等比数列,则有S = S +qS .⑵⑷若数列⑸若项数为3n的等比数列(q≠-1)前n项和与前n项积分别为S 与T ,次n项和与次n项积分别为S 与T ,最后n项和与n项积分别为S 与T ,则S ,S ,S 成等比数列,T ,T ,T 亦成等比数列.

6,高一数学公式总结人教版

下面是一些二维图形的周长与面积公式。 圆: 半径= r    直径d=2r 圆周长= 2πr =πd 面积=πr2  (π=3.1415926…….) 椭圆: 面积=πab a与b分别代表短轴与长轴的一半。 矩形: 面积= ab 周长= 2a+2b 平行四边形(parallelogram): 面积= bh = ab sinα 周长= 2a+2b 梯形: 面积= 1/2h (a+b) 周长= a+b+h (secα+secβ) 正n边形: 面积= 1/2nb2 cot (180°/n) 周长= nb 四边形(i): 面积= 1/2ab sinα 四边形(ii): 面积= 1/2 (h1+h2) b+ah1+ch2 三维图形 以下是三维立体的体积与表面积(包含底部)公式。 球体: 体积= 4/3πr3 表面积= 4πr2 方体: 体积= abc 表面积= 2(ab+ac+bc) 圆柱体: 体积= πr2h 表面积= 2πrh+2πr2 圆锥体: 体积= 1/3πr2h 表面积=πr√r2+h2 +πr2 三角锥体: 若底面积为A, 体积= 1/3Ah 平截头体(frustum): 体积= 1/3πh (a2+ab+b2) 表面积=π(a+b)c+πa2+πb2 椭球: 体积= 4/3πabc 环面(torus): 体积= 1/4π2 (a+b) (b–a) 2 表面积=π2 (b2–a2)坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。轴线的交点是 (0, 0),称为 原点。水平与垂直方向的位置,分别用x与y代表。 一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。这条直线与y轴相交于 (0, c),与x轴则相交于(–c/m, 0)。垂直线的方程式则是x=k,x为定值。 通过(x0, y0)这一点,且斜率为n的直线是 y–y0=n(x–x0) 一条直线若垂直于斜率为n的直线,则其斜率为–1/n。通过(x1, y1)与(x2, y2)两点的直线是 y=(y2–y1/x2–x1)(x–x2)+y2   x1≠x2 若两直线的斜率分别为m与n,则它们的夹角θ满足于 tanθ=m–n/1+mn 半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。 三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球, 以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。 三维空间平面的一般式为ax+by+cz=d。 三角学边长为a、b、c的直角三角形,其中一个夹角为θ。它的六个三角函数分别为:正弦(sine)、余弦 (cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。 sinθ=b/c  cosθ=a/c  tanθ=b/a cscθ=c/b  secθ=c/a  cotθ=a/b 若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。 a=cosθ    b=sinθ
万能公式:sin2α=2tanα/(1+tan^2α)(注:tan^2α是指tan平方α) cos2α=(1-tan^2α)/(1+tan^2α) tan2α=2tanα/(1-tan^2α) 升幂公式:1+cosα=2cos^2(α/2) 1-cosα=2sin^2(α/2) 1±sinα=(sin(α/2)±cos(α/2))^2 降幂公式:cos^2α=(1+cos2α)/2 sin^2α=(1-cos2α)/2
维图形下面是一些二维图形的周长与面积公式。 圆: 半径= r    直径d=2r 圆周长= 2πr =πd 面积=πr2  (π=3.1415926…….) 椭圆: 面积=πab a与b分别代表短轴与长轴的一半。 矩形: 面积= ab 周长= 2a+2b 平行四边形(parallelogram): 面积= bh = ab sinα 周长= 2a+2b 梯形: 面积= 1/2h (a+b) 周长= a+b+h (secα+secβ) 正n边形: 面积= 1/2nb2 cot (180°/n) 周长= nb 四边形(i): 面积= 1/2ab sinα 四边形(ii): 面积= 1/2 (h1+h2) b+ah1+ch2 三维图形 以下是三维立体的体积与表面积(包含底部)公式。 球体: 体积= 4/3πr3 表面积= 4πr2 方体: 体积= abc 表面积= 2(ab+ac+bc) 圆柱体: 体积= πr2h 表面积= 2πrh+2πr2 圆锥体: 体积= 1/3πr2h 表面积=πr√r2+h2 +πr2 三角锥体: 若底面积为A, 体积= 1/3Ah 平截头体(frustum): 体积= 1/3πh (a2+ab+b2) 表面积=π(a+b)c+πa2+πb2 椭球: 体积= 4/3πabc 环面(torus): 体积= 1/4π2 (a+b) (b–a) 2 表面积=π2 (b2–a2)坐标几何一对垂直相交于平面的轴线,可以让平面上的任意一点用一组实数来表示。轴线的交点是 (0, 0),称为 原点。水平与垂直方向的位置,分别用x与y代表。 一条直线可以用方程式y=mx+c来表示,m是直线的斜率(gradient)。这条直线与y轴相交于 (0, c),与x轴则相交于(–c/m, 0)。垂直线的方程式则是x=k,x为定值。 通过(x0, y0)这一点,且斜率为n的直线是 y–y0=n(x–x0) 一条直线若垂直于斜率为n的直线,则其斜率为–1/n。通过(x1, y1)与(x2, y2)两点的直线是 y=(y2–y1/x2–x1)(x–x2)+y2   x1≠x2 若两直线的斜率分别为m与n,则它们的夹角θ满足于 tanθ=m–n/1+mn 半径为r、圆心在(a, b)的圆,以(x–a) 2+(y–b) 2=r2表示。 三维空间里的坐标与二维空间类似,只是多加一个z轴而已,例如半径为r、中心位置在(a, b, c)的球, 以(x–a) 2+(y–b) 2+(z–c) 2=r2表示。 三维空间平面的一般式为ax+by+cz=d。 三角学边长为a、b、c的直角三角形,其中一个夹角为θ。它的六个三角函数分别为:正弦(sine)、余弦 (cosine)、正切(tangent)、余割(cosecant)、正割(secant)和余切(cotangent)。 sinθ=b/c  cosθ=a/c  tanθ=b/a cscθ=c/b  secθ=c/a  cotθ=a/b 若圆的半径是1,则其正弦与余弦分别为直角三角形的高与底。 a=cosθ    b=sinθ 依照勾股定理,我们知道a2+b2=c2。因此对于圆上的任何角度θ,我们都可得出下列的全等式:

文章TAG:人教  人教版  高一  数学  人教版高一数学  
下一篇