本文目录一览

1,太阳外部结构的三个层次从里到外依次是

应该是光球,色球和日冕三层吧
日冕、色球和光球
从里到外,光球层,色球层,日冕层,

太阳外部结构的三个层次从里到外依次是

2,太阳的外部结构从内到外依次是我们平时所看到的太阳是太阳的

序号 参考答案 1 光球层、色球层、日冕层 2 光球层
读图,太阳外部结构的三个层次从里到外依次是光球、色球、日冕. 故选:c.

太阳的外部结构从内到外依次是我们平时所看到的太阳是太阳的

3,太阳内部构造由内外依次是

太阳是由核心、辐射区、对流层、光球层、色球层、日冕层构成。1、核反应区(核心),从中心到0.25太阳半径是太阳发射巨大能量的真正源头,也称为核反应区。在这里,太阳核心处温度高达1500万度,压力相当于3000亿个大气压,随时都在进行着四个氢核聚变成一个氦核的热核反应。2、辐射区,0.25太阳半径~0.86太阳半径是太阳辐射区,它包含了各种电磁辐射和粒子流。辐射从内部向外部传递过程是多次被物质吸收而又再次发射的过程。从核反应区到太阳表面的行程中,能量依次以X射线、远紫外线、紫外线,最后是可见光的形式向外辐射。太阳是一个取之难尽,用之不竭的能量源泉。3、对流层是辐射区的外侧区域,其厚度约有十几万千米,由于这里的温度、压力和密度梯度都很大,太阳气体呈对流的不稳定状态。使物质的径向对流运动强烈,热的物质向外运动,冷的物质沉入内部,太阳内部能量就是靠物质的这种对流,由内部向外部传输。4、对流层上面的太阳大气,称为太阳光球。光球是一层不透明的气体薄层,厚度约500千米。它确定了太阳非常清晰的边界,几乎所有的可见光都是从这一层发射出来的。5、色球,在温度极小区之上是一层大约2,000 公里厚,主导著谱线的吸收和发射。因为在日全食的开始和结束时可以看见彩色的闪光,因此称为色球,色球层的温度随着高度从底部逐步向上提升,接近顶端的温度大约在20,000 K。在色球的上层部分,氦开始被部分的电离。6、日冕是太阳大气的最外层,由高温、低密度的等离子体所组成。亮度微弱,在白光中的总亮度比太阳圆面亮度的百分之一还低,约相当于满月的亮度,因此只有在日全食时才能展现其光彩,平时观测则要使用专门的日冕仪。扩展资料:太阳光球以上的部分统称为太阳大气层,跨过整个电磁频谱,从无线电、可见光到伽马射线,都可以观察它们分为5个主要的部分:温度极小区、色球、过渡区、日冕、和太阳圈,太阳圈可能是太阳大气层最稀薄的外缘并且延伸到冥王星轨道之外与星际物质交界,交界处称为日鞘,并且在那儿形成剪切的激波前缘。色球、过渡区和日冕的温度都比太阳表面高,原因还没有获得证实,但证据指向阿尔文波可能携带了足够的能量将日冕加热。参考资料:搜狗百科 太阳
太阳从内到外主要分为内部结构和大气层.一、内部结构分为3层:1、内核其半径是太阳半径的1/4,约为整个太阳质量的一半以上.太阳核心的温度极高,达到1500万℃,压力也极大,使得由氢聚变为氦的热核反应得以发生,从而释放出极大的能量.2、辐射层范围是从热核中心区顶部的0.25个太阳半径向外到0.71个太阳半径,这里的温度、密度和压力都是从内向外递减.从体积来说,辐射层占整个太阳体积的绝大部分.3、对流层其范围从太阳0.71个太阳半径向外到达太阳大气层的底部.这一层气体性质变化很大,很不稳定,形成明显的上下对流运动.二、太阳大气同样分为3层:1、光球层太阳光球就是我们平常所看到的太阳圆面,属太阳大气层中的最低层或最里层.其厚度达500千米,而平均密度只有水的几亿分之一.黑子活动就发生在这一层.2、色球层紧贴光球以上的一层大气,厚约8000千米,其物质密度和压力要比光球低得多.“日珥”现象就发生在这一层.3、太阳日冕日冕是太阳大气的最外层.其密度比色球层更低,而它的温度反比色球层高,可达上百万摄氏度.其范围从色球层一直延伸到好几个太阳半径的地方.日冕还会有向外膨胀运动,并使得冷电离气体粒子连续地从太阳向外流出而形成太阳风.
圭表是中国古代最重要的天文仪器它包括圭和表两部分表示用来什么圭用来什么?

太阳内部构造由内外依次是

4,太阳由内而外的结构是怎样的我们平时看到的太阳是哪一层

由里向外是光球层,色球层和日冕,平常看到的是光球层
太阳的内部结构(日震学) 太阳的中央为核心约位在0~0.25的太阳半径。密度约为水的158倍;温度约为15000000k在如此高温高密度的环境下,可发生核聚变反应。 太阳核心之外为太阳辐射层,约为在0.25~0.86太阳半径。其底部密度约为水的20倍,温度约为8000000k;其上部密度约为水的0.01倍,温度约为500000 k。 太阳核心所发生的核聚变反应,可能是氢-氢链反应,以及碳循环链反应。这些核聚变链反应可放出巨大内部能量(光子)以及为微中子。其中光子需经过约两百万年的时间,才能慢慢藉着碰撞与再辐射的方式穿过致密的太阳辐射层穿到太阳表面,而微中子却不会与太阳内部物质发生碰撞作用,因此可以自由的穿过太阳内部高密度区到达太阳表面。科学家们希望藉着测量到达地表的微中子数量,来确定理论上太阳内部核聚变反应方程式的正确性。然而到目前为止,测量到地表的微中子数量仍少于理论上所预测的数值。 值的一提的是,发生核聚变的反应是决定一个星球为恒星的必要条件。因为行星在生命初期,自己也会发光。巨大行星如木星,它目前所发生的能量,还是超过它所吸收的太阳能。以太阳为例,太阳就是绕着本银河中心,旋转运行。而本银河在宇宙中的位置也不断改变。 注:因太阳表面磁力线重联所导致日珥结构的崩溃,造成日冕喷发、磁云、太阳闪焰与激震波的形成。研究此激震波的传递而发展出日震学,而探得太阳内部从内至外为核心层、辐射层、对流层、光球层、色球层、日冕区。 太阳内部的核聚变反应 太阳这个大球体的直径是864,000哩,包含了33,500亿亿方哩的极高热气体,重量比10的27次方吨的两倍还多。深藏在太阳内部的各种气体密度、温度和成份都已被推测出来,使天文物理学家可以弄清令这些气体燃烧的核反应过程,以及太阳的形成年龄。 太阳核心是一切力量的中心和出发点。氢原子于2,700万度高温转化为氦。以 g 射线形式释放出的能,向太阳表面涌出,可达300,000哩的高空中。而太阳内部每秒钟以六亿五千七百万吨之多的氢转变为六亿五千二百五十万吨氦灰--放出能为e=mc^2 。根据太阳质量及核聚变反应速率,估计太阳的年龄至今已有49亿年,如果太阳能保持住每秒钟消耗不超过六亿五千七百万吨氢的话,还可已燃烧500亿年,或更久一些。但不幸的是:从宇宙态的发展来看,在短期之内单是太阳核心中灰烬重量所引致的温度上升,就会引发其它更复杂的核反应,而太阳就得开始消耗比现在所耗更多得多的燃料。大约在约五十亿年内这加速程序将开始,太阳就开始膨胀。所以太阳燃烧氢而发光的寿命约为110亿年(11 billion years)。 原始太阳系星云的诞生 大约46亿年前,银河系的某个角落发生了超新星爆炸。这次爆炸的震波在星际星云中传送,导致不均匀更为严重。这么一来,星际云便朝着密度较浓的部分收缩,开始在中心形成原始太阳。原始太阳周围的气体往原始太阳掉落,距离较远的气体则开始绕着原始太阳旋转,形成圆盘状漩涡星云,称为原始太阳系星云。 进入1980年代后期之后,红外线天文卫星iras在一颗年轻星球「金牛座t型星」周围实际发现了这种圆盘状星云,并藉由红外线观测到星球周围的灰尘。1992年,又在金牛座t型星观测到圆盘状星云的气体所放出的电波,同时确定了这些气体正在旋转。 星际云中,1000分之一公厘的微尘约占总质量的1%。据推测,原始太阳系星云在初期是处于激烈的乱流状态,微尘和气体搅和在一起。后来乱流渐渐平息,微尘互相合并成长,沉积在圆盘中心面。这段期间长达数千年之久。 微尘聚集成长为微行星 沉积于圆盘赤道面的微尘层后来发生分裂,形成无数颗微行星。地球轨道附近的微行星大小约数公里,质量约一千兆公斤。这些微行星藉着彼此尺的重力不断碰撞、合并,而逐渐成长。微行星越大成长速度越快。 现今木星领域的外侧,除了岩石物质以外,冰物质也在沉积,导致外侧原始行星的质量比内侧的原始行星大。质量一但超过现今地球的十倍,便会不断大量吸收周围原始太阳系星云的物质。等到总质量达到现今木星的程度,便会反过来排斥附近的星际云,再也不会把物质吸进来。于是大气的吸取到此为止,木星于焉诞生。木星的大气含有大量的氢和氦,正是原始太阳系星云气体的主要成分。 太阳系的形成与木星的影响 成长为巨大行星的木星,对周遭的原始太阳系星云发生潮汐力的作用。由于这个作用,位于木星内侧的星云物质往太阳靠拢,位于木星外侧的星云物质则往太阳系外飞散。另一方面,比土星更远的行星还需要一段很长的时间才能形成,但在还没有吸取到足够的气体前星云就飞散了,所以愈靠外侧的行星大气愈稀薄。 类地行星因质量太小无法吸取星云的气体,所以它的组成几乎保留微行星的原始状态,成为金属/岩石质的行星。太阳系星云在木星形成后逐渐飞散,造成今日太阳系的形貌。
依次为光球层、色球层和日冕层w我们平时看到的是日冕层!!!
表层
最外层
太阳和地球一样,也有大气层。太阳大气层从内到外可分为光球、色球和日冕三层。光球层厚约5000千米,我们所见到太阳的可见光,几乎全是由光球发出的。

文章TAG:太阳  外部  外部结构  结构  太阳的外部结构从内向外依次是什么  
下一篇