本文目录一览

1,什么是质数和合数详细

质数即素数:除自身和1外没有其他约数,如:2,3,5,7,11;合数即除自身和1外还有其他约数的整数。如:4,6,8,9。

什么是质数和合数详细

2,什么是合数什么是质数

1、质数:一个大于1的整数,如果除1和它本身以外,没有其他的约数,这样的数就叫作质数,也叫素数。2、合数:一个大于1的整数,如果除了1和它本身以外,还有其他的约数,这样的数就叫作合数。3、奇数:奇数亦称单数,是一类重要的数,即不能被2整除的整数。奇数常表示为2n+1或2n-1,其中n是整数。4、偶数:偶数亦称双数,是一类重要的数,即能被2整除的整数。偶数常表示为2n,其中n是整数。偶数的和、差、积都是偶数。扩展资料:由质数和合数的概念可以知道,在非0的自然数中,1既不是质数也不是合数。历史上曾将1也包含在质数之内,但后来为了算术基本定理,最终1被数学家排除在质数之外。在小学阶段,学生学习质数和合数,是为后面学习求最大公因数、最小公倍数以及约分、通分打下基础。在数论中,质数有着重要的地位,一直吸引着许多数学家们不断去探索。2500年前,古希腊数学家欧几里得证明了质数的个数是无限的,并提出少量质数可写成“2的n次方减1”的形式---这里n也是一个质数。此后,许多数学家曾对这种质数进行研究。17世纪的法国教士梅森是其中成果较为卓著的一位,因此后人将“2的n次方减1”形式的质数称为梅森质数。

什么是合数什么是质数

3,什么是质数什么是合数

质数指出了1和数本身能被其他数整除的数以外的数,如:2、3、5、7…… 合数 :是除1和质数以外的所有数。
2是质数,4是合数

什么是质数什么是合数

4,什么叫质数合数

质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。例如2、3、5、7、11、13等能被1整除的,就是质数。合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。扩展资料:质数的个数是无穷的。欧几里得的《几何原本》中的证明使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,N+1是素数或者不是素数。如果N+1为素数,则N+1要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。如果N+1为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以N+1不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。质数具有许多独特的性质:(1)质数p的约数只有两个:1和p。(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。(3)质数的个数是无限的。(4)质数的个数公式 是不减函数。(5)若n为正整数,在 到 之间至少有一个质数。(6)若n为大于或等于2的正整数,在n到 之间至少有一个质数。(7)若质数p为不超过n( )的最大质数,则 。(8)所有大于10的质数中,个位数只有1,3,7,9。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。参考资料来源:百度百科——合数参考资料来源:百度百科——质数

5,质数和合数都是什么呢

你好:质数是:在大于1的自然数中,除了1和它本身以外不再有其他因数的自然数。合数是:指在大于1的整数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。与之相对的是质数,而1既不属于质数也不属于合数。最小的合数是4。其中,完全数与相亲数是以它为基础的。

6,什么是质数和合数

质数又称素数,是一个大于1的自然数,并且因数只有1和它自身,不能整除其他自然数。合数指自然数中除了能被1和本身整除外,还能被其他数(0除外)整除的数。50以内的合数是:4、6、8、9、10、12、14、15、16、18、20、21、22、24、25、26、27、28、30、32、33、34、35、36、38、39、40、42、44、45、46、48、49、50。50以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47。扩展资料:合数性质:1,所有大于2的偶数都是合数。2,所有大于5的奇数中,个位为5的都是合数。3,除0以外,所有个位为0的自然数都是合数。4,所有个位为4,6,8的自然数都是合数。5,最小的(偶)合数为4,最小的奇合数为9。6,每一个合数都可以以唯一形式被写成质数的乘积,即分解质因数。(算术基本定理)质数性质:质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。如果 为素数,则 要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。1、如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。参考资料:百度百科---质数 百度百科---合数

7,质数和合数的概念是什么

合数指自然数中除了能被1和本身整除外,还能被其他的数整除的数。与之相对的是质数是只能被1和它本身整除的数,这里有个特殊的数字1它既不属于质数也不属于合数
质数就是除了本身和1以外没有其他因数的数合数就是除了本身和1以外还有其他因数的数这里涉及到几个概念:(1)因数。简单的说就是,如果一个数a是另一个数b的倍数(也就是a能整除b),那么b就是a的因数(2)由于“质数”与“合数”属于小学所教范畴,所以这里所说的“数”特指“自然数”,即1、2、3、4、5……举个例子,因为5除了能被1和5整除外,不能被其他数整除,所以5是质数6不仅能被1和6整除外,还能被2和3整除,所以6是合数还有,有的书上将“质数”写成“素数”,其实就是同一个概念
一个数只有1和它本身两个因数叫做质数。一个数除了1和它本身还有别的因数叫做合数。1既不是质数也不是合数

8,质数和合数的定义

质数和合数的定义,质数和合数的定义就是质数什么和数单冒单数质数合数,质数指的是单数合数指的是双数,这个你能明白吗?
哦?前辈说的太乱了。哦来说吧: 如果一个数只可以分解成1和本身相乘的话,这个数就是质数。例如;3=1x3,3就是质数了。 反之,就是合数,如6=1x6=2x3,6就是合数。 记住由于特殊规定,0,1既不是质数,也不是合数。 现在明白了吧
质数(又称为素数、纯数)一个数,如果只有1和它本身两个因数,这样的数叫做质数,又称素数。例如(10以内) 2,3,5,7 是质数,而 4,6,8,9 则不是,后者称为合成数或合数,合数是除了1和它本身还能被其他的整数整除的自然数。质数具有许多独特的性质:(1)质数p的约数只有两个:1和p。(2)初等数学基本定理:任一大于1的自然数,要么本身是质数,要么可以分解为几个质数之积,且这种分解是唯一的。(3)质数的个数是无限的。(4)质数的个数公式是不减函数。(5)若n为正整数,在到之间至少有一个质数。(6)若n为大于或等于2的正整数,在n到之间至少有一个质数。(7)若质数p为不超过n()的最大质数,则。(8)所有大于10的质数中,个位数只有1,3,7,9

9,什么是质数 什么是合数

质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。
只有1和它本身两个因数的数叫做质数有2个以上因数的数叫做合数
只有1和它本身两个因数的数叫做质数有2个以上因数的数叫做合数
质数又称素数。指在一个大于1的自然数中,除了1和此整数自身外,没法被其他自然数整除的数。换句话说,只有两个正因数(1和自己)的自然数即为素数。比1大但不是素数的数称为合数。1和0既非素数也非合数。素数在数论中有着很重要的地位。 合数是指 ①两个数之间的最大公约数只是1的那两个数的乘积; ②两个数之间的公约数不只是1,用其中一个约数乘以最小的数,能整除,乘出来的那个数就是合数 合数又名合成数,是满足以下任一(等价)条件的正整数: 1.是两个大于1 的整数之乘积; 2.拥有某大于1 而小于自身的因数(因子); 3.拥有至少三个因数(因子); 4.不是1 也不是素数(质数); 5.有至少一个素因子的非素数. 6、两个或两个以上素数的乘积,可以组成一个合数,并且只可以组成一个合数。反之,一个合数可以拆分为一组素数的乘积,并且只可以拆分为一组素数的乘积。也就是说:由三个以上素数的乘积组成的合数,不可以视为两个素数的乘积!(也可以说除了1和它本身以外还有别的因数)

文章TAG:质数与合数  什么是质数和合数详细  
下一篇