1,短除法的定义

短除法就是分解质因数,以后用处很大,尤其是用来做整数拆数、凑数的时候~竞赛题上用的比较多
求最小公倍数,用短除法,一开始的两个数中小的乘最后两个互质数中大的就行了。

短除法的定义

2,什么是短除法

是求最大公因数和最小公倍数的。
短除法 求最大公因数的一种方法,也可用来求最小公倍数。求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。例如:求12与18的最大公因数。12的因数有:1、2、3、4、6、12。18的因数有:1、2、3、6、9、18。12与18的公因数有:1、2、3、6。12与18的最大公因数是6。这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。 12=2×2×318=2×3×312与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。

什么是短除法

3,什么是短除法

http://baike.baidu.com/view/915249.html?tp=0_00 很全的
短除法   求最大公约数的一种方法,也可用来求最小公倍数。   求几个数最大公约数的方法,开始时用观察比较的方法,即:先把每个数的约数找出来,然后再找出公约数,最后在公约数中找出最大公约数。   例如:求12与18的最大公约数。   12的约数有:1、2、3、4、6、12。   18的约数有:1、2、3、6、9、18。   12与18的公约数有:1、2、3、6。   12与18的最大公约数是6。   这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。   12=2×2×3   18=2×3×3   12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。   采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。   从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。   实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图图1。   在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。

什么是短除法

4,什么叫短除法急需

短除法 求最大公约数的一种方法,也可用来求最小公倍数。 求几个数最大公约数的方法,开始时用观察比较的方法,即:先把每个数的约数找出来,然后再找出公约数,最后在公约数中找出最大公约数。 例如:求12与18的最大公约数。 12的约数有:1、2、3、4、6、12。 18的约数有:1、2、3、6、9、18。 12与18的公约数有:1、2、3、6。 12与18的最大公约数是6。 这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。 12=2×2×3 18=2×3×3 12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。 采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。 从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。 实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图图1。 在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。
2|_24__ 0 2|_12__ 0 2|_6__ 0 2|_3__ 1 1 1 就是这样的除法,能算2进制,是这个意思吗? 后面是余数。
2|_24__ 0 2|_12__ 0 2|_6__ 0 2|_3__ 1 1 1 就是这样的除法,能算2进制,是这个意思吗? 后面是余数。

5,短除法到底是什么

这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的.于是又采用了给每个数分别分解质因数的方法.12=2×2×318=2×3×312与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了.所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数.从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数.采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数.如果把这两个数合在一起短除,则更容易找出公约数和最大公约数.从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数.与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积.
短除法是把一般除法竖式中除的过程加以简化,除的时候每次把除数写在被除数的左边,把商写在被除数的下面.像2/3这样除.
求最大公因数的一种方法,也可用来求最小公倍数。   求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。   例如:求12与18的最大公因数。   12的因数有:1、2、3、4、6、12。   18的因数有:1、2、3、6、9、18。   12与18的公因数有:1、2、3、6。   12与18的最大公因数是6。   这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。   12=2×2×3   18=2×3×3   12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。   采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。   从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。   实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图1。   在计算多个数的最小公倍数时,对其中任意两个数存在的因数都要算出,其它无此因数的数则原样落下。最后把所有因数和最终剩下每两个都是互质关系(除1以外没有其他公因数)的数连乘即得到最小公倍数。如图2

6,短除法是什么

最大公倍数和最大公因数
 求最大公因数的一种方法,也可用来求最小公倍数。   求几个数最大公因数的方法,开始时用观察比较的方法,即:先把每个数的因数找出来,然后再找出公因数,最后在公因数中找出最大公因数。   例如:求12与18的最大公因数。   12的因数有:1、2、3、4、6、12。   18的因数有:1、2、3、6、9、18。   12与18的公因数有:1、2、3、6。   12与18的最大公因数是6。   这种方法对求两个以上数的最大公因数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。   12=2×2×3   18=2×3×3   12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公因数2和3,而它们的乘积2×3=6,就是12与18的最大公因数。   采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公因数和最大公因数。如果把这两个数合在一起短除,则更容易。   从短除中不难看出,12与18都有公因数2和3,它们的乘积2×3=6就是12与18的最大公因数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公因数,就是这两个数的公共质因数的连乘积。   实际应用中,是把需要计算的两个或多个数放置在一起,进行短除,如附图1。   在计算多个数的最小公倍数时,对其中任意两个数存在的因数都要算出,其它无此因数的数则原样落下。最后把所有因数和最终剩下每两个都是互质关系(除1以外没有其他公因数)的数连乘即得到最小公倍数。如图2
用递等式算
短除法 求最大公约数的一种方法,也可用来求最小公倍数。 求几个数最大公约数的方法,开始时用观察比较的方法,即:先把每个数的约数找出来,然后再找出公约数,最后在公约数中找出最大公约数。 例如:求12与18的最大公约数。 12的约数有:1、2、3、4、6、12。 18的约数有:1、2、3、6、9、18。 12与18的公约数有:1、2、3、6。 12与18的最大公约数是6。 这种方法对求两个以上数的最大公约数,特别是数目较大的数,显然是不方便的。于是又采用了给每个数分别分解质因数的方法。 12=2×2×3 18=2×3×3 12与18都可以分成几种形式不同的乘积,但分成质因数连乘积就只有以上一种,而且不能再分解了。所分出的质因数无疑都能整除原数,因此这些质因数也都是原数的约数。从分解的结果看,12与18都有公约数2和3,而它们的乘积2×3=6,就是 12与18的最大公约数。 采用分解质因数的方法,也是采用短除的形式,只不过是分别短除,然后再找公约数和最大公约数。如果把这两个数合在一起短除,则更容易找出公约数和最大公约数。 从短除中不难看出,12与18都有公约数2和3,它们的乘积2×3=6就是12与18的最大公约数。与前边分别分解质因数相比较,可以发现:不仅结果相同,而且短除法竖式左边就是这两个数的公共质因数,而两个数的最大公约数,就是这两个数的公共质因数的连乘积。 实际应用中,是把需要计算的两个或多个数放置在一起,进行短除在计算多个数的最小公倍数时,对其中任意两个数存在的约数都要算出,其它无此约数的数则原样落下。最后把所有约数和最终剩下无法约分的数连乘即得到最小公倍数。
 求最大公因数的一种方法,也可用来求最小公倍数。 http://baike.baidu.com/view/915249.htm,这里介绍得很详细的

文章TAG:短除法  除法  定义  短除法  
下一篇